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202 Significance Tests 	 Ch. 8 

cups is the manufacture of small arms cartridge cases. One critical dimension 
is of paramount significance, namely, the variation of wall thickness around 
the periphery denoted by X.  Suppose management has set the following deci- 
sion rule: Accept the lot if the expected variation in wall thickness around 
the periphery [denoted by E(X) ]  is I .03 mm; reject it otherwise. Obviously 
the decision management wishes to make is either to accept o r  reject the lot. 
The rule set by management for acceptance of a lot is 

Accept if E ( X )  1 . 0 3  mm 
Reject if E ( X )  > .03 mm 

A naive approach would be to measure the variation in wall thickness 
of the whole lot, record these measurements and calculate their arithmetic 
mean z, and then apply the decision rule set by management. Is this a prac- 
tical approach? Obviously not: If we inspect each cup our inspection cost will 
be tremendous. Consequently, the cost of a cartridge case will be excessive. 
In the light of this analysis it is evident that the decision to accept or reject 
the lot will be based on the result of an experiment in which, say, a sample of 
size n is selected at random from the lot and then each cup is inspected and 2 
is calculated. We expect that 2 will be too close to E ( X ) ,  and hence we are 
inclined to conclude that E ( X )  2 .03 if and only if 22a prescribed constant, 
which should be > .03. How to determine the value of this constant is dis- 
cussed later. 

Actually the decision to accept or reject the lot will be based on the result 
of a specified experiment. In other words, our decision will be based on 
statisfical inference. Hence stafisfical i/flere/zce cunbe defined as  ~zaking infer- 
ence about the population on the basis,of samples. 

Now is this specified experiment the best? Or, in other words, is the choice 
of a sample of size n at random and observing the sample mean f as a cri- 
terion for decision the procedure that leads to the optimal decision? If the 
answer is yes, what is the value of n? If the answer is no, what other alterna- 
tive procedures might he used in order to reach an optimal decision? An 
alternative procedure might bekt6 inspect a sample of size n at random and 
to observe the largest measurement, X,.,. If X,., 2 a prescribed constant, 
coliclude that E ( X )  is 2 . 0 3  and-accordingly accept the lot or reject otherwise. 
Suppose this alternative procedure is better than the previous one. What is 
the value of n? In general, what is the basis for the selection of an optimal 
procedure? We shall answer these questions as we proceed. 

8.3 Statistical Decision Theory 

Considering again our introductory example, we have two statistical 
lrj~potheses.The first hypothesis is E ( X )  1.03, and the second hypothesis 

is E ( X )  > . 
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is E(X) > .03.The procedure by which a choice is made between these two on j statistical hypotheses is called statistical h)yothesis testing. nd 
The hypothesis that is tested [ E ( X )1 . 0 3 1  is called the iiull liypothesis 

nd and is denoted by H,;the other [ E ( X )> .03] is called the akernative 

sly l~)~potliesisand is denoted by H,. Testing of statistical hypotheses involves 

Ot. rejection or acceptance of the null hypothesis. In other words, we wish to ! determine whether the null hypothesis is true or false. In symbols we write 
I 
i H,: E ( X )  < .03 

I H,: E ( X )  > .03 

i 

:ss i The decision to accept or to reject the null hypothesis will be based on the 
tic I outcome of our experiment. Suppose a sample of size n is drawn at random 

IC-
i 
I and the sample mean f is calculated. Furthermore, suppose that the follow- 

(ill 1 ing decision rule is specified: Accept the null hypothesis if and only if 5 
ve. ,035 and reject otherwise. Accordingly, we shall reject the null hypothesis if 
ect and only if the observed outcome is greater than ,035. I 
of According to this decision rule we shall reject the null hypothesis if the 

1R value of the sample mean ,%? falls in the critical region. The critical region 
3re (sometimes k n o ~ n  as the rejection region) is specified b ) ~the set of values of 
nt, that is greater than ,035.To simplify the analysis let us suppose that this 
lis- critical dimension is normally distributed with unknown mean E ( X )  and 

known standard deviation a = ,006.Accordingly, is a random variable 
ult that is normally distributed with mean E ( X )  and standard deviation o / G .  
on ! Let us analyze further the outcomes based on this decision rule. If the mean 
er- of the lot under consideration is actually equal to .03, as shown in Fig. 8.1, 

I then 
mice 

I .  The null hypothesis is accepted whenever the value of R does not fall in :rl-
the the critical region. 

2. The null hypothesis is rejected whenever the value of f falls in the critical na-
An region. 

tnd If the mean of the lot under considew;ion is actually equal to .04, as shown 
.nt, in Fig. 8.2, then 
lse. 3. The null hypothesis is accepted wheAever the value of does not fall in 
t is 

the critical region. ilal 
4. The null hypothesis is rejected whenever the value of R falls in the critical 

region. 

Table 8.1 summarizes the outcomes based on this decision rule. Now in 
I and 4 we have made correct decisions whereas in 2 and 3 the decisions 
made are incorrect. 

Obviously in case 2 we rejected the lot despite the fact that E ( X )  = .03. 
Thus we have committed an error. This error is known as an error of tl~e/irst 

: 
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Null hypoth 8Null hypoth 

Fig. 8.1 Graphical description of critical and acceptance regions 
for the given decision rule [ E ( X )= ,031. 

Fig. 8.2 Graphical description of critical and acceptance regions 
for the given decision rule [E (X)= .041. 
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Table 8.2 shows the values of the power function for each possible value of where k is a co 
the parameter E ( X )  for the given decision rule. The graph of this power func- i lowing equatio~ 
tion is shown in Fig. 8.3. It can readily be seen from the graph that the chance 
of accepting a lot having an average variation in wall thickness greater than 
.03 mm decreases as this average value increases for the given decision rule. 

TABLE 8.2 

Thus 

I 	 Consequently,
what is the sar 
size will be tre 
of the sarnple . 

! 
i 	 assume that n 

on this assum 

Hence 

I 
Similarly, we 

I 	 n = 16. Valu~ 
in Table 8.3. 
8.4. 

Fig. 8.3 Power cyrve for the given rule. 
4

From our previous discussion the reader can see that we arbitrarily de- 
cided that R should be less than or &pal to ,035 and n = 4 in order to test 
the hypothesis given by management. Usually this will not be theappropriate 
procedure of testing statistical hypotheses. The inappropriateness of this 
procedure stems from the fact that the rule set by management was too rigid. 
Should management have decided that the rnaximum probability of rejecling 
a lot having E ( X )  5 .03 is, say, .02, then we could find the appropriate test The risk ( 

procedure in this case. In fact, then we would test the following hypothesis: increases. Tc 
a chance of 

H,:E ( X )  5 . 0 3  against H, : E ( X )  > .03 given a,., = .02 	 when n = 4, 
Then we write I 100 when n -

a,., = P[R > k I E ( X )  = ,031 = ,039 have 
I 
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where k is a constant to be determined. The constant k must satisfy the fol- 
lowing equation: 

.02 = P{Zo7E t m ,  k - .03T -1a / f i
I 

I 	 k - .03 

1 
k - .03 

Thus 

2 055a 01233k = .03 + -$-=- = .03 + 
11 

Consequently, reject the null hypothesis if y >  .03 C . 0 1 2 3 3 / 6 .  Now 

I what is the sample size? The optimal procedure for determining the sample 
size will be treated in the next chapter; however, we will analyze the effect 
of the sample size on controlling risk of an error of the second kind. Let us 
assume that n can be either 4,9, or 16 and evaluate the power function based 
on this assumption. If rr =4 ,  then 

Hence 

Similarly, we can evaluate the value of the power function for n = 9 and 
I 	 n = 16. Values of the power function for these three sample sizes are given 

in Table 8.3. The graphs for the three power functions are shown in Fig. 
8.4. 

TABLE 8.3 

The risk of making an error ofthe second khtd decreases as the sample size 
increases. To illustrate, if the incoming lots have E ( X )  = ,039 there will be 
a chance of accepting such lots 18 times out of 100 as having E ( X )  < ,030 
when n = 4, whereas there will be a chance of accepting such lots once out of 
100 when n = 9. Referring to Table 8.2, we find that incoming lots with mean 
= .039,have a chance of being accepted 10 times out of 100 when 12 =4 and 
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,027 ,030 ,033 ,036 ,039 ,042 ,045 ,048 0.51 

Fig. 8.4 Power functions for selected sample sires (a = .02). 

a,.. = .0485. This means that as the error of the first kind increases, the 
error of the second kind decreases and vice versa. It follows that by varying 
the saniple size 1ve can exercise control on the error of the second kind. 

Now if we plot P(E(X) ]  against the true average variation in wall thick- 
ness for a fixed a = .02 and sample sizes 4, 9, and 16, the resulting plot is 
called an operating characteristic (denoted by O C )  cur18e.The result is repre- 
sented by the curves in Fik. 8.5. 

The level of significance ~ n d  the sample sizeruniquely determine the OC 
curve for the given decision r'ule. It is evident that by increasing the sample 
size for a given level of significance the error of the second kind decreases. 
In practice a balance must be struck between the cost of additional observa- 
tions and the advantage of decreasing the error of the second kind. In many 
situations it is not feasible to assess explicitly the cost parameters associated 
with alternative testing'procedures. In the absence of knowledge of these cost ! 
parameters the criterion by which we can assess and compare rests of statisti- 
cal hypothesis is found in the OC curves or power functions. 

We have discussed so far a decision procedure that associated with it the 
outcome of random variable F, sample size n, and acceptance region (22 a 
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Fig. 8.5 OC curves for selected sample sizes (a = .02). 

prescribed constant). We shall refer to {his decision procedure as the 2 pro-
cedure. Now we may raise the following question: Is this procedure superior 
to the X,,, procedure? Note that the X,., progdure is specified by: draw 
at  random a sample of size n;  observe the largest measurement, X,.,; if

,lot is X,,, 5 a prescribed constant conclude that E ( X )  is less than or  equal to 
repre- .03; otherwise conclude that E(XJ ;s greater than .03. 

To compare these two procedurgs (R and X,,,) we will fix the level of 
significance at .02 and the sample.size a t  4 for both procedures and use the 
OC curves to provide a criterion of comparison. In other words, we will be 

'eases. comparing both procedures in probabilistic terms. 
serva- The alternative decision rule is to accept the null hypothesis if X,.. < k, 

P[X,,, 5 k] = I - a = .98 

Since these measurements are independent, identically distributed, normal 
variates, we write 

P I X ,  5 k)P [ X ,  <k]P I X ,  <k]P [ X ,  <k]= .98 
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r-.010 e-,1/2)z'1-&oo6 dz = (.98)lI4= ,995_;;i~;r 

whence k = .0454. This means the following: Reject the null. hypothesis 
whenever X,., is greater than .0454. The probability of occurrence of the 
error of the second kind is given by 

fl(E(X)) =P[X,.. 1 ,0454 1 E ( X )  > .03) 
Suppose now that E(X)  = ,036; then 

P(.036) = P(X,,. 1 . 0 4 5 4  1 E ( X )  = ,036) 
0 4 5 1  - ,016 

= .78 
Similarly, we can calculate the probability of occurrence of the error of the 
second kind for possible values of the true average (E(X)) .  The result is 
tabulated in Table 8.4. The OC curves for the R a n d  X,,, procedures are as 
indicated in Fig. 8.6. 

TABLE 8.4 

,030 ,033 ,036 ,039 .042 ,045 ,048 

Obviously, the procedure based upon gives better protection than the 
X,,, procedure for a whole range of alternatives. Thus the R procedure is 
preferred to the X,., procedure. Now we proved that the 2 procedure is 
supetior to the X,., procedure. Does this imply that the 2 procedure is the 
optimal one? On what basis is a procedure said to be optimal? The procedure 
is said to be optimal if the +ejection region for afixed sample size and level of 
significance minimizes the probability of occurrence of the error of the second 
kind for a whole range of aitei.natives. The optimal procedure is sometimes 

Neyman-Pearson lemma, where justification for the use of the likelihood 
ratio has been established. 

We have developed this example in order to introduce some fundamental 
concepts of statistical inference in decision making. In Chapter 9 we will 
take up the Neyman-Pearson lemma for testing statistical hypotheses about 
a single parameter. 
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Now if we are interested in testing if 1= 10, then the null hypothesis H,: I1= 10 is a simple hypothesis, whereas H,: A < 10 is a composite hypothesis. 
The study of testing hypotheses is usually classified in terms of the null hy- 
pothesis H, and alternate hypothesis H,. Thus, if the variate studied has a 
Poisson distrubition, then the hypotheses 

is a simple against simple, whereas 1 

H,: A = 10 H,: A > 10 j 
is a simple against composite. Finally 

H,: A > 10 H,:  1< 10 

is a composite against composite. Simple hypotheses can be resolved, whereas 
some of the composite hypotheses defy analytical solution. 

S U G G E S T E D  R E F E R E N C E S  

See the references given at the end of Chapter 10 
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is discrete, the values of k' that correspond exactly to the usual specified values 
of a will not always exist. In  that event we choose the percentile that  corre- 
sponds to the level closest t o  a. The probability of accepting H, when H, 

- e-""(A,I)"(9.43) p(A,)= P ( r  2 k'lA = A,)= ".*.C v !  

distribution. 

Example 9.7 Suppose that the number of unexcused absences per week in a 

als certain plant follows the Poisson distribution wifh parameter A = 7. Management 

~ e r  improved the working conditions for a period of 3 weeks. At the end of this 

~ c k  period (3 weeks), the observed number of absences was found to be equal to ten. 

di- (a) Would you infer from this result that management's action has reduced the 

tri- number of absences? Assume a = ,025. 


31 t (b) What is the power of the test if A,= 5? 


as Solr~rion 

1 (a) Here we wish to test the hypothesis 

! H,:A = A, against H ,  : A = A, < Lo 


Hence, from Eq. (9.42) we have 

k' -1  e-2,(2)"
C-= ,025 
" - 0  v !  

Consulting Table I in the Appendix we find that k' - 1 = 12, i.e., k' = 13. 
Thus we reject H ,  when the number of observed absences is less than 13. 

1 Since the number of observed absences falls in the critical region (0, 12), we 
conclude that management's action has reddced the number of absences. 

(b) The power of the test is 

~ ( 2 , )= I 	- C - e-15(15)"-= .268 
" = I ,  C! 

The procedure of deriving the optimum rejection region and the power of 
the test for other alternatives H, : A =%, > A, and H, : ,I= A, # A, will be 

<1 	 left as  an exercise for the reader. . , 

i 
i 	 9.7.3 Tests Concerning the Parameter ( p )of 


the Binomial Distribution 


In this case the explicit hypothesis to be tested is 	 C . C .  ..:. . . :  .. 
: 

H, :p =p, against H, : p = p ,  < p,  
The probability function of the binomial distribution is 

1 (9.44) = (;) p,(l - r=.O,l ,  . . . ,  n O < p < I~ ~ ( i - 1  py- ,  
iate 

! 

c 
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The nature of the optimum rejection region, then, is 

We note that the likelihood ratio is a monotonically decreasing function for 
increasing r as long as p ,  < p,. Hence the optimum rejection region is equi- 
valent to the set of values of r less than some other constant k'. Accordingly, 
we 9ee_ct-H0 when 

- r < k '  

The probability of type I error, then, is 

The value of k' can be obtained from the tables of the cumulative binomial 
distribution (Table J in the Appendix). It should be noted that the exact 
value of k' for every a will not always exist because the binomial variate has 
a discrete distribution. In such cases we choose the percentile that corre-
sponds to the level closest to a. 

The probability of accepting Howhen H, is true is 

(9.47) ~ ( p , )= P(r  2 k f  lp =p , j  = V S ~ .  -2 (i)p:(l p , p  

When n is large, Eqs. (9.46) and (9.47) can be approximated by the normal 
distribution. 

Exantpie 9.8 A manufacturer claims that his product (submitted in large lots) 
is less than 25 % defective. A randoh sample of  size 20 is drawn from a large lot. 
The number of defective items observed in the sample was one. 
(a) Would you substantiate or refute the manufacturer's claim? Use a = ,025. 
(b) Find the probability of acceptance if the submitted lot is 10% defective. 
(c) How large a sample is needed to make the answer in (b) equal ,101 Use normal 

approximation. 


Solr~rion 4 


(a) From Eq. (9.46) we have . *. 

From Table J we find k' = 2. Actually, k' = 2 corresponds to the ,0243 level 
of significance, which is close enough to the specified level. Hence, we reject 
H,, when the number of defective items in the sample is less than two. Since 
the number of observed defectives falls into the critical region [0, I], the null 
hypothesis can be rejected at the specified level of significance. This supports 
the manufacturer's claim. 
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ACCEPTANCE SAMPLING 

17.1 Introduction 

Most likely the manufacturer who buys his product (parts, subassemblies, 
material, etc.) in lots of considyable size, from one or  more suppliers, desires 
to know whether the quality characteristic within each lot conforms to his 
specification. Obviously themanufacturer would like to accept submitted lots 
if their percent defective does not exceed the specified acceptable quality level.. 
Therefore, each lot must be inspected to determine whether it is acceptable. 
More precisely, if a lot of size N items is submitted, every item in the lot will 
be inspected and classifi4 As defective or satisfactory. The lot will be accepted 
if the number of defective items in the lot is less than or equal to an allowable 
number; otherwise it witl he rejected. When the lot size N is exceptionally 
large, 100% inspection will be costly and time-consuming. Moreover, 100% 
inspection may not be feasible or advisable on the following grounds: 

1. The loss incurred due to a defective item is very low. In some cases no 
inspection at  all is the rnost.economical course of action. 

2. 	100% inspection is impossible when inspection is destructive. For instance. 
a lot of small caliber ammunition is accepted as satisfactory if 99% of 
the shots fall within a specified distance from the center of a target at a 
given range. Hence the decision to accept or  reject the lot will be reached 
after destroying the entire lot. 

490 
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3 .  100% inspection is not 100% perfect since manual or  qechanical inspec- 
tion is subject to some margin of error. 

In light of the previous discussion, can a receiver use better inspection to 
assure the quality of prodi~ct or  work submitted by a producer? The answer 
is to use acceptance sat~iplitigplans. That is, the decision to accept or reject 
a lot will be based on a series of samples drawn at random from the submitted 
lot. Sampling plans are not only economical but also are as effective as 100% 
inspection. In many instances a well-designed sampling plan may produce 
better results than 100%inspection. 

It should be borne in mind that a n  acceptance sampling plan may accept 
occasional lots with a much higher fraction of defective items than the con- 
sumer is willing to tolerate. However, if submitted lots differ in quality, the 
sampling plan will accept the good lots more frequently than the bad lots, 
and as a result a long-range average quality level, consistent with the quality 
specified, can be maintained. 

Sampling plans may be based on two different kinds of measurements. 
Inspection may be performed by grading the product as defective or  non- 
defective or as good or  bad, e.g., checking the size of cylindrical male parts 
by go and not-go ring gages. Inspection also may be performed by measuring 

,subassemblies, 
uppliers, desires 
:onforms to his 
)t submitted lots 
ble quality level. 

, the second is known as sampling by variables. In general, inspection by attri- 
butes is less expensive than by variables. However, inspection by variables is 

m in the lot will 
will be accepted 
to an allowable 
is exceptionally 

doreover, 100 % 

SAMPLING BY ATTRIBUTES 

I some cases no 
is the acceptance number. 

A sample of size 11 is drawn from the lot and inspected by attributes. The 

of a target at a 
:will be reached 

Obviously the optimal selection of n and c should be based on economic con- 
siderations. However, the formulation of an economic model which includes 
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relevant cost parameters is complicated. Therefore the values of n and c are 
determined sb that the sampling plan will discriminate between good and bad 
lots with specified odds for any level of fraction defective in  the submitted lots. 

77.2.1 The Operating Characteristic (OC) 

consumer will accept a submitted lot if its fraction defective is less than or 
equal to 1 % and invariably will reject a lot of poorer quality. A plan that 
would discriminate perfectly between lots withp < 1% and lots withp > 1% 
would have the operating characteristic (OC)  curve shown in Fig. 17.1. 

Fraction defective 

Fig. 17.1 I+al OCcurve for a sampling plan. 

100% inspection is infallible. Unfortunately no sampling plan will have an 
ideal OC curve as such. A well-designed sampling plan, however, can 
approach such a curve. Now if the consumer will reject a submitted lot when- 
ever its fraction de fec tp  exceeds 1 % (using 100% inspection), the producer 
will have to screen the rejected lot to eliminate defectives. This means that 

. 	both the consumer and:,producer will sustain excessive inspection cost. 
Consequently, it seems necessary to seek a more realistic approach to this 
problem, an approach by which it would be feasible to reduce the prohibitive 
cost of inspection. This dilemma has been solved by instituting acceptance 
sampling plans. 

In practice, the producer and consumer reach an agreement on a sampling 
plan that is fair to both. Obviously the consumer wants to protect himself 
against accepting a poor quality lot having a sizable fraction of defectives. 
He must define the risk he is willing to take in having a poor quality lot 
accepted by the sampling plan. Inother  words, the consumer specifies the 
probability of the sampling plan accepting a lot that has a fraction defective 
p,. This probability is usually denoted by P. Similarly, the producer specifies 



ture will be adopted for. these points: 

a = producer's risk 
f i  = consumer's risk 

p ,  = acceptable quality level (denoted by AQL) 
:I1 have an p, = lot tolerance percentage defective (denoted by LTPD) or sometimes 
vever, can called rejectable quality level (denoted by RQL) 

The area between the AQL and LTPD is known as the indlference zone. From 

neans that 

7221 


I 



Equation (17.4) can be evaluated by using Table I in the Appendix. The 
product np' = A  is used to enter Table I; in the column headed k = c, 

Example I
to find the P, value. The following example will illustrate the use of Table I: 

n r r ~ n t n n r '  

*:1.: 
?$. we draw tlI " . ~  

' size n we (I to compute the probabilities of acceptance of lots .5, 1, 2, 3, 4, 5, 6, 7, 8, and 
10% defective. Plot the OC curve for the sampling plan. 

.,. ,>.. 
( :  ISolrrrion. Here we have a sampling plan with rt = 40, c = 1. That is, a sample / )  

i .<,'i, 1+,


2. 
.*,b,:

13 

of 40 items is drawn from the lot and inspected. The lot is accepted if the sample 1.0 
, f '  contains not more than one defective. If p' = .5%, then 2 = .20. The probability 
. 
; :;I,I, 

( 8 1%t i  k = I ,-. 20(.2O)k .8 
: ,, P,(p' = .5 %) 2 , = ,982 lii C.. 

below: 

,.. ... 
): . ,,,The OC curve for the sampling plan is shown in Fig. 17.3. : 
, ~. I (

.#I )d; \y3,..~ . ,  
, ,;. ,I, Note that the probability of accepting a lot given a specified lot quality 

q$liI, 
;,: 
: (p') depends solely on the sample size (n) and the acceptance number (c). I

1: 
?,> 

..:~.: 
, 

Thus the two numbers 11 and c completely determine the OC curve.'Let us py.Li ; &: F, 
!il; .: now studv the effect of n and c on the shaoe of the OC curve. Suuuose in I.$?. 

of accepting : 5 %  defective lot is .9 
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Y. 

the acceptance number of tl 
9 size can be determined. If p,  

way until we find the value 8: To illustrate, if c = 0,  then 
18:
+ F ,  , (17.5);ti +?' 

-+whencenp, = .05. Similarly, FF in this way we obtain the fol 
I>,;g, 

C '. rrp,(l - 8!.% 
s*:
?> 
.E' 
iL*'4; 	 .C
0 

'2. 1 .3
I$ 
:?.. 2 .8
!I;. 3 1.3
!$, 4 1.9 
j,p<


:::. 
il...:.. 6 

5 2.6 
3.2 

Fig. 17.5 Comparison of OC curves with direrent sample sizes 

I: 	 Fo r  the same sample size, increasing the r value serves to move the curve 
farther from the origin. Thus for a fixed sample size the sampling plan 
would give better discrimination among lots of different quality if the 
acceptance number is reduced. T o  illustrate, suppose a 4 %  defective lot 
is submitted for inspection; the lot would be accepted 20% of the time it. 
c = 0,whereas the same lot would be accepted 78 % of the time if r = 2. 

2. 	For  the same acceptance number, increasing the sample size causes the 
slope of the OC to become steeper. The steeper the curve, the better the 
protection against accepting lots of poorer quality. 

17.2.2 Determination of Sampling Plan 

Assume that the producer and the c o n s k i e r  have agreed to use a single 
sampling plan for attributes that will protect 3pecified values of AQL and 
LTPD with specified values of a and p, respectively. What is now needed is 
an  OC curve that will pass through the points (AQL, 1 - a) and (LTPD, p). 
This OC curve is uniquely determined by the numbers n and r .  It should be 
noted that since n and r can take on integral values only, it is usually not 
possible to find an OC curve that will pass through these points exactly; 
however, it is possible to find a curve that will closely approach these points. 

Exarn~ple17.2 Devise a single sampling plan that will provide the following 
protection: a = .05, AQL = p ,  = .02 and p = .05, LTPD = p2 = .08. 

Sol~~rioit.To find the sample size n and the acceptance number c, we first assume 
that c = 0 and then find the ratio p21p,. If this ratio is equal to ,081.02 = 4, then 

,.., 
>. ..., 

'.: Therefore, c = 5 and n = 2.
. . 

. . requirements. Actually, we ob 
,. . 
I / . ,  
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i.'.-:,. 	 AQ
? 
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which is close indeed to the r, 
!I .. . The same result can be 
I , .  
i;:. The following table was dew 
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.. single sampling schemes (a = 
., .., 
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Directions for use of table: 

1. Calculate Re = 2. - 2 

2. Find R, in table. If it does not appear, use the next larger value shown. 
3. Read directly the acceptance number c. 
4. Davide np, by p,  to get rr,  the sample size. 

The authors [I41 proved that if the number of defectives in a sample of n follows a 
Poisson law, then 

Applying Eq. (17.6) to Example 17.2 we obtain 

From Table G in the Appendix we find that Eq. (17.7) is satisfied when 2(c + 1) 
= 12; i.e., c = 5 and the corresponding sample size can be obtained from the 
equations 

(17.8) x::~~.+,~ = 2rtp, or x : - P ;  =2 ( ~ + 1 ~7 - 1 1 ~ ~  

On substitution, Eq. (17.8) becomes 

x , ~ ~ ~ ;= 5.226 = ?n(.02) or ,> = 21.026 = 211(.08), 2  	 x.~~,: 
whence l r  = 131, which agrees with our previous finding. 

17.3 Average Outgoing Quality 

Sampling plans also may be specified according to the quality level of 
lots that leave the inspection point. Suppose that lots of size N are being 
subjected to a single sampling plan specified by n and c. Furthermore, sup- 
pose that lots of but one quality level p' are submitted for inspection. If 
inspection is nondestructive and the lot Size is very large compared to the 
sample size, then the sampling plan will reject p'% defective lot with proba- 
bility 

Now if rejected lots are 100% inspected and the defectives are removed and 
replaced by nondefectives, none of these lots will be rejected by the sampling 
plan. These lots are called rectified lots and the inspection scheme is known as 
rectifying inspection. Thus lots accepted by the sampling plan will contain 
either (1) approximately the percent defective submitted (p') although they 
will be slightly improved by the replacement of any defectives found in the 

samples by nondefectiver 
are rectified. This mean 
inspection point is a col 

ig ourgoing qrrality (denotec 

g$ 	 (17.9) AOQ = (N -

If for large N and small 
,$ becomes 

(17.10) 
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plan improves, the prob; 
sorting and screeningwill 
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.I. 	 situation graphically by c 
\$ 
i*  	 going quality for various j%
It* 
<+. P'( %)
I.:;$.,:-
i" .20:

4;. .5., ' 
,$ ., I

r" 
 2 
\:I 3p::,,*. 

4 
1%: 5& 6 
\ii: 7
]) 

8ri".. 9,$.<

13 10 
!t 

12< :1:s 14 
i? 

1"/.)I 

*,.. Figure 17.6 illustrates the 
I$i' 
,-,a. 

The maximum value of A 
s .. 
.r 	 leave the inspection poir 
,,.,I ..,

17, 	 (AOQL). From Fig. 17.f 
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