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PREFACE

The -environmental movement of the 19605 and 1970s resulted in the
creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing
these laws. Most of these laws mandate monitoring or assessment of the
physical environment, which means someone has o collect, analyze, and ex-
plain environmental data. Numerous excellent journal articles, guidance
documents, and books have been published to explain varions aspects of ap-
plying statistical methods fo environmental data analysis. Only a very few
books attempt to provide 2 comprehensive treatment of environmentat statis-
tics in general, and this book is an addition to that category.

This book is a survey of statistical methods you can use to collect and
analyze environmental data. It explains what these methods are, how to use
them, and where you can find references to them. It provides insight into
what to think about before you collect environmental data, how to collect
environmental data (via various random sampling schemes), and also how to
make sense of it affer you have it. Several data sets are used to illustrate
concepts and methods, and they are available both with software and on the
CRC Press Web so that the reader may reproduce the examples. The appen-
dix includes ar extensive list of references.

This book grew gut of the authors’ experiences as teachers, consnltants,
and software developers. It is intended as both a reference hook for envi-
ronmental scientists, engineers, and regulators who need to collect or make
sense of environmental data, and as a textbook for graduate and advanced
undergraduate students in an applied statistics or environmental science
course. Readers should have a basic knowledge of probability and statistics,
but those with more advanced training will find lots of usefil information as
well. :

A unique and powerful feature of this book is its integration with the
commercially available sofiware package S-PLUS, a popular and versatile
statistics and graphics package. S-PLUS has several add-on modules usefut
for environmental data analysis, including ENMVIRONMEMTALSTATS for
S-PLUS, S+SPATIALSTATS, and S-PLUS for ArcView GIS. Throughout this
book;, when a data set is used to explain a statistical- method, the commands
for and resulis from the soRware are provided, Using the software in con-
junction with this text will increase the understanding and immediacy of th
methods. K

This book follows a more or less sequential progression from elementary
ideas about sampling and Jooking at data to more advanced methods of esti-
mation and testing as applied to environmental data. Chapter 1 provides an
introduction and overview, Chapter 2 reviews the Data Quality Objectives
(PQO) and Data Quality Assessment (DQA) process necessary in the design
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1 INTRODUCTION

The environmental movement of the 1960s and 1970s resulted in the
creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local government agencies charged with enforcing
these laws. In the U.S., laws such as the Clean Air Act, the Clean Water Act,
the Resource Conservation and Recovery Act, and the Comprehensive
Emergency Response and Civil Liability Act mandate some sort of monitor-
ing or comparison to ensure the integrity of the environment. Once you start
talking about mionitoring a process over time, or compating observations
from two or more sites, you have entered the world of numbers and statistics.
In fact, more and more environmental regulations are maadating the use of
statistical techniques, and several excellent books, guidance documents, and
journal articles have been publistied to explain how to apply various statisti-
cal methods to environmental data analysis (e.g., Berthoux and Brown, 1994;
Gibbons, 1994; Gilbert, 1987; Helsel and Hirsch, 1992; McBean and Rovers,
1998; Ott, 1995; Piegorsch and Bailer, 1997; ASTM, 1996; USEPA,
1989a,b,c; 1990; 1991a,b,c; 1992abed; 1994ab,e; 1995ab.ec; 1996ab;
1997ab). Only a very few books attempt to pravide a comprehensive treat-
ment of environmenta! statistics in general, and even these omit some impor-
tant topics.

This explosion of regulations and mandated statistical analysis has re-
sulted in at least four major problems.

¢ Mandated proé'edures or those suggested in guidance documents are
not always appropriate, or may be misused (e.g., Millard, 1987a;
Davis, 1994; Gibkons, 1994).
s Statistical methods developed in other fields of research need to be
" . adapted to envirommental data analysis, and there is a need for inno-
vative methods in environmental data anafysis.
e The backgrounds of people who need to analyze environmerital data
" "vary widely, from someone who took a statistics course decades ago
1o someone with a Ph.I). doing high-level research.
‘e There is no single software package with a comprehensive treatment
of environmental statistics.”

This book is an attempt to solve some of these problems. It is a survey of
statistical methods you can use to collect and analyze environmental data. Tt
explains what these methods ate, fow to use them, and witere you can find
references to them. It provides insight into what to think about before you
collect envirommental data, how to collect environmental data (via various
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fan of the lognormal distribution (see Equatibn (4.10)); so the me-
‘ays smfaller than the mean (see Figure 4.12). The second point is
coefficient of variation of X, only depends on o, the standard de:

Tnula for ﬂ1e—§!(ew of a lognormal distribution can be written as:

' Skew = 3CV + cv3 (4.36)

et al,, 1993). This equation shows that large values of the C'V
- to very skewed distributions. As 1 geis small, the distribution

158 ske\-ved and starts to resemble a pormal distribution. Figure
i two different lognormal distributions characterized by the mean

Two Lognormal Distributions

Value of Random Variable

4.20 Probabrlity densily functions for two lognormal distributions

ameter Lognormal Distribution

- -parameter lognormal distribution is bounded below at 0. The.

teter lognormal distribution includes a threshold parameter

it determines the lower boundary of the random variable Thaz
g (X—}:) has a normal distribution with mean p and stande;rd de-
len X is said to have a three-parameter lognormal distribution.

4: Probability Distributions 179

The threshold parameter y affects only the locationi of the three-parameter
lognormal distribution; it has no effect on the variance or the shape of the
distribution. Note that when y = 0, the three-parameter lognormal distribu-
tion reduces to the two-parameter lognormal distribution. The three-
parameter lognormal distribution is sometimes used in hydrology to model
rainfall, stream flow, pollutant loading; etc. {Stedinger et al., 1993).

Binomial Distribution

After the normal distribution, the binominl distribution is one of the
most frequently used distributions in probability and statistics. It is used to
model the number of occurrences of a specific event in n independent trials.
The outcome for each trial is binary: yes/mo, success/failure, 1/0, etc. The
- binomial random variable X represents the number of “successes” out of the
n trials. In environmental monitoring, sometimes the binomial distribution
is used fo mode! the proportion of observations of a pollutant that exceed
some ambient or cleanup standard, ot to compare the proportion of detected
. vatues at backgrotind and compliance umits (USEPA, 1989, Chapters 7 and
8; USEPA; 1989b, Chapter 8; USEPA, 1992b, p. 5-29; Ott, 1995, Chapter 4),

The probability density (mass) function of a binomial random variable X
is given by: ‘

f(x) - [;j p~ (1 - p)n—x , x =012 .., n 43N

~ where n denotes the number of trials ahd p denotes the probability of “suc-
. cess” for each trial. It is common notation to say that X has a B(n, p) distti-
_ bution. .

. The firs} quantity on the right-hand side of Equation (4.37) is called the
. binomial coefficient. It represents the number of different ways you can at-
 range the x “successes” to occur in the n trials. The formula for the bino-

" mial coefficient is:
(n nt
x) xt(n- x)!

The quantity a! is called “n factorial” and is the product of all of the inte-
gers between 1 and . That is, '

(4.38)
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Biqomial Dansity with
{size=10, prob=0.5)

T T T T T

T T T T T
0 1 2 3 4 5 6 7

Vealue of Random Variable

re 4.21  Probability density function of a B(10, 0.5) random variable

Bir!omial Density with
(size=10, prob=0.2)

! T T T T T T T
Q 1 2 3 4 5 8 7

Value of Random Varlable

Ire 422 Probability density function of a B(10, 0.2) random variable

4: Probahility Distributions 181
n!=n(n-1j{n-2)-21 (4.39)

Figure 4.5 shows the pdf of a B(1, 0.5) random variable and Figure 4.10
shows the associated cdf. Figure 4.21 and Figure 4.22 show the pdf’s of a
B(10, 0.5) and B(10, 0.2) random variable, respectively.

The Mean and Variance of the Binomial Distribution
'The mean and variance of a binomial random variable are;

E(X) =np
4.40)
var (X) = np (1 ~ p)

The average number of successes in n trials is simply the probability of a
success for one trial multiplied by the number of trials. The variance de-
pends on the probability of success. Figure 4.23 shows the function £{p) =
p(1-p) ag a function of p. The variance of a binomial random variable is
greatest when the probability of success is 1, and the variance decreases to 0
as the probability of success decreases to O or increases to 1.

Variance of Binomial Distribution

pl1-p)

4.0

P

Figure 423  The variance of a B(1, p) random variable as a iunclion of p
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< more about what all these Greek letters mean later in this chap-
talk about the lognormal distribution. Also, in the next chapter
about how we came up with a mean of 0.6 and a coefficient of

0.5).

lative frequency (density) histogram, the area of the bar is the

of falling in that interval. Similarly, for a continuous random

probability that the random variable falls into some interval, say
5 and 1, is simply the area under the pdf between these two in-
ints. Mathematically, this is written as:

1
Pr(0.75 < x £1) = [ f£(x)dx 43)
¢.75

ormal pdf shown in Figure 4.7, the area under the curve between
5 about 0.145, so there is a 14.5% chance that the random vari-
into this interval.

‘obability Density Functions

8 display examples of all of the available probability distribu-
Us and ENVIRONMENTALSTATS for S-PLUS. These probability
can be used as models for populations. Almost all of these dis-
n be derived from some kind of theoretical mathematical model
omial distribution for binary outcomes, the Poisson distribution
eats, the Weibull distribution for extreme values, the normal dis-
sums of several random variables, etc.). Later in this chapter we
in detail probability distributions that are commonly used in en-
statistics.

uce the binomial pdf shown in Figure 4.5 using the
TALSTATS for 8-PLUS pull-down menu, follow these steps.

the S-PLUS menn bar, make the following menun choices:
ronmentalStats>Probability Distributions "and Random
wers>Plot Distribution. This will bring up the Plot Distribu-
Function dialog box. '

2 Distribution box, choose Binomial. In the size box, type 1. In
rob box, type 0.5.

:OK or Apply.

1e lognormal pdf showm in Figure 4.7, follow these sieps.

4: Probability Distributions 147

1. On the S-PLUs menu bar, make the following menu choices:
EnvironmentalStats>Probability Distributions and Random:
Numbers>Plot Distribution. This will bring up the Plot Distribu-
tion Function dialog box.

2. In the Distribution box, choose Lognormal (Alternative). In the
mean box, type 0.6. In the cv box, type 0.5. Click OK or Apply.

Command

To produce the binomial pdf shown in Figure .4.5 using tl-{e
ENVIRONMENTALSTATS for S-PLUS .Command or Script Window, type this
command.

pdfplot ("binom", list{size=1, prob=0.5))

To produce the lognormal pdf shown in Figure 4.7, type this command.

pdfplot (*lnorm.alt", list{mean=0.6, cv=0.5))

Beta Density with Non-central Beta Density with
{shape1=2, shape2=4) m(shape1 =1, shape2=1, ncp=1}
o : - P
a .
E g
-] gg ]
L) ;
£ 2
2 2
Q. <
! . 4 06 0B 10
00 Ve o?igandu?ﬁs\fada%lg e 08 $Ze of Random Vartabla
Binomial Density with Cauchy Densily with
(size=10, prob=0.5) (location=0, scale=1)
::3 7 i 8 ]
o
oy
F] gﬁ _
e
£ £ |
g | 2°
=1
g DN = =S
o 1\fazlv.le:‘lt:ﬂ‘Rzms':!t:\ri \.":ris%:lle9 b 30 .%gm;yf’Rer?dmn‘{loariabzig »

Figure 4.8 Probabikity distributions in S-PLUS and ENVIRONMENTALSTATS for S-PLus
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Chi Densily with
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Chi-square Density with
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Extreme Value Density with
{location=0, scale=1)

Generalized Extreme Value Density with

1 2. 3
Value of Random Variable

(location=0, scale=1, shape=0.5)

0 . 2 4 -]
Value of Random Variable

F Density with
(df1=5, df2=10)

1 2 3 4 5
Velua of Random Variable

04

0.2

Relative Fraquency

0.0

-3 -2 -1 0 1
Value of Randomn Vafable

Non-central F Densily with
{df1=5, df2=10, nep=1}

quancy
&4

Relativa Fra
00 02

2 4 6
Value of Random Vartable

“Igure 4.8 (continued) Probabil'ity distributions in $-PLus and
ENVIRONMENTALSTATS for S-PLus
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Gamma Density with Geomelric Den;ﬂy with
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Figure 4.8 (contlnued) Probability distributions in S-PLUS and
EMVIRONMENTALSTATS for S-PLUS
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‘ara-Modified Lognonnal (Delta) Density with Zewo-Modified Nemmal Denslty with
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Figure 4.8 {continued) Probability distributions In 5-PLus and
ENVIRONMENTALSTATS for 5-PLus

ting Values of the Probability Density Function

san use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to compute
: of the pdf for any of the built-in probability distributions. As we
iquation (4.1), the value of the pdf for the binomial distribution
.Figure 4.5 is 0.5 for x = 0 (a tail) and 0.5 for x= 1 (a head). From
{4.2), you can show that for the lognormal distribution shown in
7, the values of the pdf evaluated at 0.5, 0.75, and 1 are about 1.67,
£0.35, respectively.

ympute the values of the pdf of the binomial distribution shown in

- .5 using the ENVIRONMENTALSTATS for S-PLUS pul]-down menu,

ese steps.

Jn the S-PLUS menu bar, make the following menu choices:
imvironmenialStats>Probability Distributions and Random
Jumbers>Denslty, CDF, Quantiles. This will bring up the Densi-
ies, Cumulative Probabilities, or Quantiles dialog box.

‘or the Data to Use buttons, choose Expression. In the Expression
0x, type 0:1. In the Distribution box, cheose Binomial. In the size
ox type 1. In the prob box type 0.5. Under the Probability or
duantile group, make sure the Density box is checked.

Jlick OK or Apply.

utz the values of the pdf of the lognormal distribution shown in
7 for the values 0.5, 1, and 1.5, follow these steps.

n the S-PLUS menu bar, make the following menu choices:
‘nvironmentalStats>Probability’ Distributions and Random
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Numbers>Density, CDF, Quantiles. This will bring up the Densi-
ties, Cumulative Probabilities, or Qnantiles dialog box.

2. For the Data to Use buttons, choose Expression. In the Expression
box, type ¢(0.5, 0.75, 1). In the Distribution box, choose Log-
normal (Alternative). In the mean box type 0.6. In the cv box type
0.5. Under the Probability or Quantile group, make sure the Density

- box is checked.
3. Click OK or Apply.

Command
To compute the values of the pdf of the binomial distribution sl'fown in
Figure 4.5 using the S-PLUS Command or Script Window, type this com-

mand.

dbinom{0:1, size=1, prob=0.5}

To-compute the values of the pdf of the lognormal distribution shown. in
Figure 4.7 for the values 0.5, 0.75, and 1, type this command using
ENVIRONMENTALSTATS for S-PLUS.

dlnorm.alt{c{0.%, 0.75, 1)}, mean=0.6, Cv=0.5)

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

The cumulative distribution function {cdf) of a random variable X,
sometimes catled simply the distribution function, is the function F such that

F(x) = Pr(X 5 x) | (4.4)

for all values of x. Thatis, F{x} is the probability that the random variable
X is less than or equal to some number x. The cdf can also be defined or
computed in terms of the probability density function (pdf) £ as

X

F(x)=Pr(x <x)= [£()de (“5)

—o
for a continnous distribution, and for a discrete distribution it is

F{x) = = 2 f(x) @8

3 <X
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ire 4.9 illustrates the relationship between the ili i
_the relation: probability density fime-
and the cumulatlvg distribution function for the lognormal distribution

vt in Fipure 4.7,
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4.9 . Relationship between the pdf ang the cdf for a lognormal distribution
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You cap use the cdf to compute the probability that a random variable
will fall inte some specified interval. For example, the probability that a
random variable X falls into the interval {0.75, 1] is given by:

1
pr{0.75 < x <1)= [ f£(x)dx
' 0.75

= Pr{X
Px{X

A

1) - Pr(X £ 0.75) +
0.75) 4.7

It

F(1) - F(0.75) +
Pr{X = 0.75)

For a continuzons random variable, the probability that X is exactly equal to
0.75 is 0 (because the area under the pdf between 0.75 and 0.75 is 0), but for
a discrete random variable there may be a positive probability of X taking on
the value 0.75.

Plotting Cumulative Distribution Functions

Figure 4.10 displays the cumulative distribution function for the binomial
random variable whose pdf was shown in Figure 4.5. Figure 4.11 displays
the cdf for the lognormal random variable whose pdf was shown in Figure
47.
" We can see from Figure 4.10 that the cdf of a binomial random variable
is a step function (which is also true of any discrete random variable). The
cdf is 0 until it hits x = 0, at which point it jumps to 0.5 and stays there until
it hits x = 1, at which point it stays at 1 for all values of x at 1 and greater.
On the other band, the cdl for the lognormal distribution shown in Figure
4.11 is a smooth curve that is 0 below x = 0, and rises towards 1 as x
increases.

Menu
To produce the binomial cdf shown in Figure 4.10 using the
ENVIRONMENTALSTATS for S-PLUS pull-down menu, follow these steps.
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HYPOTHESIS TESTS

Cdmpan'ng Groups to Standards
fid One Another

In Chapters 2 and 6, we introduced the idea of the hypothesis testing
framework, In Chapter 6 we discussed three tools you can use to make an
bjective decision about whether contamination is present or not: prediction
ervals, tolerance intervals, and control charts. In this chapter, we provide
“fiill discussion of the statistical hypothesis testing framework, discuss the
lationship between confidence intetrvals and formal hypothesis tests, and
iscuss hypothesis tests to make inferences about a single population and
ompare two or more populatious.

[HE HYPOTHESIS TESTING FRAMEWORK

. We introduced the hypothesis testing framework back in Chapter 2. Our
irst example mvolved deciding whether to wear a jacket or not, and our de-
ision depended on our belief about whether it would rain that day (Table
.1}.” Our second example involved deciding whether a site or well is con-
itninated or not (Table 2.2). Table 7.1 below reproduces Table 2.2. In this
e, the null hypothesis is that no contamination is present. ' )

. Reality
Your Pecision No Cantamination Contamination
‘ Mistake:
Contamination Type 1 Ervor ] Correct Decision
(Probability = o) (Probability = 1}
: : Mistake:
No Contamination Cotrect Decision Type 1l Etror
N {Probability = §)
;!e 71 Hypothesis testing framework for deciding on the presence of

contamination in the environment when the mll hypothesis is
“no contamination”

.In Step 5 of the DQO process (see Chapter 2), you usually link the prin-
ipal study question you defined in Step 2 with some population parameter
iich as the mean, median, 95" percentile, etc. For example, if the study
tion is “Is the concentration of 1,2,3,4-tetrachlorobenzen (TeCB} in the

365
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il at the Cleanup site is less than or equal to 2 ppb,” or “The average value
pH at the compliance well is greater than or equal to 7.” We rarely con-
&t two-sided hypothesis tests. '

‘Hypotheses tests are usually based on a fest statistic, say T, which is
puted from a random sample from the population. If Tis “too extreme,”
then we decide to reject the null hypothesis in favor of the aliernative hy-
thesis. For example, suppose we are interested in determining whether the
{fit mean of a distribution is less than or equal to some hypotbesized value
‘4. the alternative that the true mean is bigger than p,. This is simply the
one-sided upper hypothesis given in Equations (7.5) and (7.6) with 6 re-
placed by . We can use Student’s t-statistic, which we will discuss in more -
detail later in this chapter, to test this hypothesis. Student’s t-statistic is a
led version of the sample mean minus the hypotheslzed mean:

Cleanup site significantly above background levels?” then you may
» reformulate this question as “Is the average concentration of TeCB
il at the Cleanup site greater than the average concentration of TcCB
il at a Reference site?”

pothesis test ot significance test is a formal mathematical mech
objectively making a decision in the face of uncertainty, and is usp
I to answer a question about the value of a population parameter, A

d hypothesis test about a population parameter 8 (theta) is used to.
wl! hypothesis

Hy : 0 = 6, 7 (.1
& two-sided altemative hypothesis

= ¥ 7.
a8 8 (?-2).; i o

) (pronounced “H-naught”) denotes the myll hypoﬂ:es;s that the true
0 is equal to some specified value 0, (theta-naught). A lower one. :
vothesis test is used to test the null hypothesis

Since the sample mean is an unbiased estimator of the true mean p, if the
thie mean is equal to plo, then the sample mean is “bouncing around” p, and
_t: tatistic is “bouncing around” 0. The distribution of the t-statistic under
the null hypothesis is shown in Figure 5.9 in Chapter 5 for sample sizes of
2, 5, and eo. On the other hand, if the true mean 1 is larger than p,, then
sample mean is bouncing around p, ‘the numerator of the t-statistic is -
ncing around p-io, and the t-statistic is bouncing around some positive
imber. So if the t-statistic is “large” we will probably reject the nuil hy-
pothesis in favor of the altemative hypothesis.

Ho H B b4 90 (7-3)
e lower one-sided alternative hypothesis

Hy : ‘
a9 <8 4. arametric vs. Nonparametric Tests

Fot a parametric test, the test statistic T is usually some estimator of ©
ossibly shifted by subtracting a number and scaled by dividing by a num-
‘ber), and the distribution of T’ under the null hypothesis depends on the dis-
ftribution of the population (e.g., normal, Jognormal, Poisson, etc.). For a
nonparametric or distribution-free fest, T is usually based on the ranks of
‘the._data in the random sample, and the distribution of T under the null hy-
pothesis does not depend on the distribution of the population.

For example, for a two-sample t-test (see below), the test statistic is &
caled version of the difference between the two sample means, and both
opulations are assumed to be normatly distributed. For the Wilcoxon rank
umn test (see below), the test stafistic is the sum of the ranks in the first sam-
‘ple; and the distribution of this statistic under the null hypothesns does not
‘dépend on the distribution of the two populations.

wper one-sided Irypothesis test is used to test the null hypothesis
Hy : 0 < 8§ 7 (75)
2 upper one-sided alten.latiye hypothesis
20> 8 (7%_) :

‘nmental monitoring, we are almost always concemed only with-
[ hypotheses, such as “The average concentration of TcCB in the
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re I and Type I1 Errors (Significance Level and Power)

As stated above, 2 hypothesis test involves using a test statistic computed
1 data collected from an experiment to make a decision. A test statistic is
1dom quantify (e.g., some expression involving the sample mean); if you
at the experiment or get new observations, you will often get a different
e for the test statistic. Because you are making your decision based on
value of a random quantity, you will sometimes make the “wrong”

se. Table 7.2 beI‘ow illustrates the general hypothesis testing framework;
simply a generalization of Table 7.1 above.

Reality
Your Decisiont Hy Trne Hy False
. . Mistake:
Reject H, Type 1 Error Correct Decision
{Probability = a) (Probability = 1-§)
) Mistake:
2o Not Reject 5, Correct Decision Type H Error

(Probability = B)

Table 7.2 The framework of a hypothesis test

s we explained in Chapter 2, statisticians call the two kinds of mistakes
san make a Type I error and a Type I error. Of course, in the real
1, once you make a decision, you take an action (¢.2., clean up the site
nothing), and you hope to find out eventually whether the decision you
was the corregt decision. For a specific hypothesis test, the probability
king a Type I error is usually denoted with the Greek letter o. (alpha)
+ called the significance-level or a-level of the test. This probability is
alled the false positive rate. The probability of making a Type II error
wlly denoted with the Greek letter B (beta). This probability is also
the falfe'negative rate. The probability 1—[ denotes the probability of
tIy de‘c1dmg to reject the null hypothesis when in fact it is false. This
sility is called the power of the hypothesis test. .
tte that in Table 7.2 above the phrase “Do Not Reject Hy” is used in-
3f “Decide Hy is True.” This is because in the framework of hypothe-
ting, you assume the null bypothesis is true unless you have enough
1ce to reject if. If you end up not rejecting H, because of the value of
est statistic, you may have unknowingly committed a Type If error;
e alternative hypothesis is really true, but you did not have enough,
ce to reject H,.
critical aspect of any hypothesis test is deciding on the acceptable val-
 the probabilities of making a Type 1 and Type 11 error. This is paﬂ: of
of the DQO process. The choice of values for o. and f is a subjec-
olicy decision. The possible choices for & and B are limited by the

7: Hypothesis Tests 369

sample size of the experiment (usvally denoted n), the variability inherent in
the data (usually denoted o), and the magnitude of the difference between
the null and alternative hypothesis (usually denoted & or A). Conventional
choices for o, are 1%, 5%, and 10%, but these choices should be made in the

context of balancing the cost of a Type 1 and Type 1 error. For most hy-

pothesis tests, there is 2 well-defined relationship between o, B, n and the
scaled difference 8/c (see Chapter 8). A very important fact is that for a
specified sample size, if you reduce the Type I error, then you increase the
TFype H error, and vice-versa.

P-Values

When you perform 2 hypothesis test, you usually cotnpute a quantity
called the p-value. The p-value is the probability of seeing a test statistic as
extreme or more extreme than the one you observed, assuming the muil hy-
pothesis is true. Thus, if the p-value is less than or equal to the specified
value of a (the Type I error level), you reject the null hypothesis, and if the
p-value is greater than o1, you do not reject the nuil hypothesis. For hypothe-
sis tests where the test Statistic has a continuous distribution, under the null
hypothesis (i.e., if H, is true), the p-value is uniformly distributed between 0
and 1. When the test statistic has a discrete distribution, the p-value can take
on only a discrete number of values.

To get an idea of the relationship between p-values and Type 1 errors,
consider the following example. Suppose your friend is 2 magician and she
has a fair coin (i.e., the probability of a “head” and the probability of a “tail”
are both 50%) and a coin with heads on both sides (so the probability of a
head is 100% and the probability of a tail is 0%). She takes one of these
coins out of her pocket, begins to flip it several times, and tells you the out-
come after each flip. You have to decide which coin she is flipping. Of
course if a flip comes up tails, then you automatically know she is flipping
the fair coin. If the coin keeps coming up heads, however, how many flips in
a row coming up heads will you let go by before you decide to say the coin
is the two-headed coin?

Table 7.3 displays the probability of seeing various numbers of heads ina
row undet the null hypothesis that your friend is flipping the fair coin. {Of
course, under the altemative hypothesis, all flips will result in a head and the
probability of seeing any number of heads in a row is 100%.) Suppose you
decide you will make your decision after seeing the resuits of five flips, and
if you see T =5 heads in a row then you will reject the null hypothesis and
say your friend is flipping the two-headed coin. If you observe five heads in
a row, then the p-value associated with this outcome is 0.0312; that is, there

~ is a probability of 3.12% of getting five heads in a row when you flip a fair

coin five times. Therefore, the Type I error rate associated with your deci-
sion rule is 0.0312. If you want to create a decision rule for which the Type 1

N T

ety

PN
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rate is no greater than 1%, then you will have to wait until you see the

me of seven flips. IF your decision rule is to reject the null hypothesis
seeing T = 7 heads in a row, then the actual Type I error rate is 0.78%.
u do see seven heads in a row, the p-value is 0.0078.

# Heads in a2 Row (T) | Probability (%)
i 50
25
12.5
.25
.12
.56
.78
.39
.20
.10

W s i~ien|n] ||

olejolo|r|w]le

o
(=]

7.3 The probability of seeing Theads in a row in Tlips of a fair coin

w this example, the power associated with your decision rule js the
bility of correctly deciding your friend is flipping the two-headed coin
in fact that is the one she is flipping. This is a special example in
. the power is equal to 100%, because if your friend really is flipping
© headed coin then you will always see a head on each flip and no mat-
at value of T you choose for the cut-off, you will always ses T heads
w. Usually, however, there is an inverse relationship between the Type
Type Il etror, so that the smalter you set the Type I error, the smaller
wer of the test (see Chapter 8).

ionship between Hypothesis Tests and Confidence Intervals

nsider the null hypothesis shown in Equation (7.1), where 8 is some
ition parameter of interest (e.g., mean, proportion, 95" percentile, etc.).
is a one-to-one relationship between hypothesis tests concerning € and
idence interval for this parameter. A (1—0)100% confidence interval
onsists of all possible vitlues of @ that are associated with not rejecting
T hypothesis at significance level .. Thus, if you know how to create
‘dence interval for a parameter, you can perform a hypothesis test for
rameter, and vice-versa, Table 7.4 shows the explicit relationship be-
hypothesis tests and confidence intervals.
enever you report the resuits of a hypothesis test, you should almost
report the corresponding confidence interval as well. This is because
have a small sample size, you may not have much power to uncover
t that the nuif hypothesis is not true, even if there is a huge difference
n the postulated value of @ (e.g., 8, < 5 ppb) and the true value of 6
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{e.g., =20 ppb). On the other hand, if you have a large sample size, you
may be very likely to detect a small difference between the postulated .val?e
of B (e.g., 8 < 5 ppb) and the true value of § (e.g., 0=6 ppb)., but this dif-
ference may not really be important to detect. Confidence intetvals help

~ you soit out the important distinction between a statistically significantly

difference and a scientifically meaningful difference.

- Test Alternative Corvesponding Rejection Rule
Type Hypothesis Confidence Interval Based on CI
Two-sided b=, Two-sided LCL > 8, ot

‘ {LCL, UCL} UcL < 8,
Lower 8<8, Upper UCL <0,
[{—=, UCL]
Upper 0>9, Lower LCL> 8,
- [LCE, )

Table 7.4 Relationship between hypothesis tests and confidence intervals

OVERVIEW OF UNIVARIATE HYPOTHESIS TESTS

Table 7.5 summarizes the kinds of univariate hypothesis tests that we will
talk about in this chapter. In Chapter 9 we will talk about hypothes_is tt-asts
for regression models. We will not discuss hypothesis tests for m}:lt-lvanate
observations. A good introduction to multivariate statistical analysis is John-
son and Wichern (1998).

One-Sample Two-Samples Multiple Samples
Goodness-of-Fit .
Proportion Proportions Proportions
Location Locations  ~ Loc?tic_nqs
Varjability Variability Variability

Table 7.5 Summary of the kinds of hypothesis lests discussed in this chapter

GOODNESS-OF-FIT TESTS

Most commonly used parametric statistical tests assume the observations
in the random sample(s) come from a normal population. So how do you
know whether this assumption is valid? We saw in Chapter 3 how to makf: a
visual assessment of this assumption using Q-Q plots. Another way !0 verify
this assumption is with a goodness-of-fit test, which lets you specify what
kind of distribution you think the data come from and then compute a test
statistic and a p-value.
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roodness-of-fit test may be used to tést the null hypothesis that the
me from a specific distribution, such as “the data come from a normal
ition with mean 10 and standard deviation 2,” or to test the more gen-
I hypothesis that the data come from a particular family of distribu-
uch as “the data come from a lognormal distribution.” Goodness-of-
+ are mostly used to test the latter kind of hypothesis, since in practice
Hly know or want to specify the parameters of the distribution.
sractice, goodness-of-fit tests may be of limited use for very large or
nall sample sizes. Almost any goodness-of-fit test will reject the pull
esis of the specified distribution if the number of observations is very
ince “real” data are never distributed according to any theoretical dis-
m {Conover, 1980, p. 367). On the other hand, with only a very small
r of observations, no test will be able to determine whether the obser-
appear te come from the hypothesized distribution or some other to-
fferent looking distribution.

for Normality

> commonly used tests to test the null hypothesis that the observations
Yom a normal distribution are the Shapiro-Wilk test (Shapiro and

.965), and the Shapiro-Francia test (Shapiro and Francia, 1972). The -
»Wilk test is more powerful at detecting short-tailed (platykurtic) and -

| distributions, and less powesfisl against symmetric, moderately long-
{leptokurtic) distributions. Conversely, the Shapiro-Frangia test is
owerful against symmetric long-tailed distributions and less powerful
short-tailed distributions (Royston, 1992b; 1993). These tests are
wred to be two of the very best tests of normality available
stino, 1986b, p. 406).

‘apiro-Wilk Test
1 Shapiro-Wiil test statistic can be writien as:

Il 2 I1 9 B
= I:Z azx(i)} Z (x; - 3 (7.8)
i=1 i=1 .

%4y denotes the i™ ordered observation, a is the i™ element of the
‘ector a, and the vector a is defined by:

a = @Tv‘l/ v ivig (7.9
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where T denotes the transpose operator, and m is the vector of expected val-
ves and V is the variance-covariance matrix of the order statistics of a ran-
dom sample of size n from a standard normal distribution. ‘That is, the val-
ues of a are the expected values of the standard normal order statistics
weighted by their variance-covariance matrix, and normalized so that
a’a = 1. It can be shown that the W-statistic in Equation (7.8) is the same
as the square of the sample correlation coefficient between the vectors a2 and
Xn:

W = { r|a X )] }2 | (7.10)

where

r(;_c, X) = ni=1 - : (7.1)
‘{Z ey — 2 D vy — P
i=1 i=1

(see Chapter 9 for an explanation of the sample correlation coefficient).

Small values of # yield small p-values and indicate the null hypotbesis of
pormality is probably not true. Royston (1992a) presents an approximation
for the coefficients a necessary to compute the Shapiro-Wilk W-statistic, and
also a transformation of the. W-statistic that has approximately a standard
normal distribution under the null hypothesis. Both of these approximations
are used in ENVIRONMENTALSTATS for S-PLUS.

The Shapiro-Francia Test

Shapiro and Francia (1972) introduced a modification of the W-test that
depends only on the expected values of the order statistics (m} and not on the
variance-covariance matrix (¥):

n 2 /n .
= [Z 'bix(i)} Y, ey — R (7.12)
i=1 i=1
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by is the i" clement of the vector b defined as:

b = f_ﬂ/ \/_ELI; (7.13)

1 authors, including Ryan and Joiner (1973), Filliben (1975), and
g and Bingham (1975), note that the W'-statistic is intuitively
ing because it is the squared sample correlation coefficient associated
normal probability plot. That is, it is the squared comelation between
lered sample values x,) and the expected normal order statistics ar

-.W'_—_-{r[}_),;_c()]}z ={r|:m,ﬂ)]}2 : (7.14).

isbe_rg and Biflg!lam (1975) introduced an approximation of the Sha-
ancita W'-stalistic that is easier to compute. They suggested using

c;)res (Blom, 1958, pp. 68-75; see Chapter 3) to approximate the ele-
Hm

= { r [g. % )] }2 (7.15)

7 is the ™ element of the vector c defined by:

c = ,@/J@T—.@ _ © (7.16)

(-3
= @7 i—:é (.17)
4 .

7: Hypothesis Tests . 375

" and © denotes the standard normal cdf. That is, the values of the elements of

m in Equation (7.13) are replaced with their estimates based on the usuval
plotting positions for 2 normal distribution (see Chapter 3).

Filliben (1975) proposed the probability plot correlation coefficient
(PPCC) test that is essentially the same test as the test of Weisberg and Bing-
ham (1975), but Filliben used different plotting positions. Looney and
Gulledge (1985) investigated the characteristics of Filliben’s PPCC test us-
ing various plotting position formulas and concluded that the PPCC test
based on Blom plotting positions performs slightly better than tests based on
other plotting positions. The Weisberg and Bingham (1975) approximation
to the Shapiro-Francia #’-statistic is the square of Filliben's PPCC test sta-
tistic based on Blom plotting positions. Royston (1992¢) provides a method
for computing p-values associated with the Weisberg-Bingham approxima-
tion to the Shapiro-Francia W'-statistic, and this method is implemented jn
ENVIRONMENTALSTATS for S-PLUS.

The Shapiro-Wilk and Shapiro-Francia tests can be used fo test whether
observations appear to come from a normal distribution, or the transformed
‘observations (e.g., Box-Cox transformed) come from a normal distribution.
Hence, these tests can test whether the data appear to come from a normal,
lognormal, or three-parameter lognormal distribution for example, as well as
a zero-modified normal or zero-modified loghormal distribution.

Example 7.1: Testing the Normality of the Reference Area TcCB Data

In Chapter 3 we saw that the Reference area TcCB data appear to come
from a lognormal distribution based on histograms (Figures 3.1, 3.2, 3.10,
and 3.11), an empirical cdf plot (Figure 3.16), normal Q-Q plots (Figures
3.18 and 3.19), Tukey mean-difference Q-Q plots {Figures 3.21 and 3.22),
and a plot of the PPCC vs. A for a variety of Box-Cox transformations (Fig-
vre 3.24), Here we will formally test whether the Reference area TeCB data
appear to come from a normal or lognormal distribution.

Assumed

Distribution Shapiro-Wilk (W) Shapiro-Francia (W)

Normal 0.918 {p=0.003) 0.923 (p=0.006})
_l__._tguanna! 0.979 {p=0.55) 0.987 (p=0.78)

Table 7.6 Results of tests for normality and lognermality for the Reference area
TeCB data

Table 7.6 lists the results of these two tests, The second and third col-
umns show the test statistics with the p-values in parentheses. The p-values
clearly indicate that we should fiot assume the Reference area TeCB data
come from a nonnal distribution, but the assumption of a lognormal distri-






