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PREFACE 
The environmental movement of the 1960s and 1970s resulted in the 

creation of several laws aimed at protecting the environment, and in the crea- 
tion of Federal, state, and local government agencies charged with enforcing 
these laws. Most of these Laws matdate monitoring or assessment of the 
physical environment, which means someone has to collect, analyze, and ex-
plain environmental data Numerous excelleut journal articles, guidance 
documents, and books have been published to explain various aspects of ap- 
plying statistical methods to environmental data analysis. Only a very few 
books attempt to provide a comprehensive treatment of environmental statis- 
tics in general, and this book is an addition to that category. 

This book is a survey of statistical methods you can use to collect and 
analyze environmental data. It explains lvlrat these methods are, how to use 
them, and rvfiere you can f i d  references to them. It provides insight into 
what to think about before you collect environmental data, how to collect 
environmental data (via various random sampling schemes), and also how to 
make sense of it ajter you have it. Several data sets are used to illustrate 
concepts and methods, and they are available both with software and on the 
CRCPress Web so that the reader may reproduce the examples. The appen- 
dix includes an extensive list of references. 

This book grew out of the authors' experiences as teachers, consultants, 
and s o h a r e  developers. It is intended as both a reference book for envi- 
ronmental scientists, engineers, and regulators who need to collect or make 
sense of environmental data, and as a textbook for graduate and advanced 
undergraduate students in an applied statistics or environmental science 
course. Readers should have a basic knowledge of probability and statistics, 
but those with more advanced training will fmd lots of useful information as 
well. 

A unique and powerful feahue of this book is its integration with the 
co~mercially available software package S-PLUS, a popular and versatile 
statistics and graphics package. S-PLUS has several add-on modules useful 
for environmental data analysis, including ENVIRONM~NTALSTATSfor 
S-PLUS, S+SPATIALSTATS, and S-PLUS for Arcview GIs. Throughout this 
book, when a data set is used to explain a statistical method, the commands 
for and results fromthe software are provided. Using the software in con- 
junction with this text will increase the understanding and immediacy of the 
methods. 

This book follows a more or less sequential progression from elementary 
ideas about sampling and looking at data to more advanced methods of esti- 
mation and testing as applied to environmental data. Chapter 1 provides an 
introduction and overview, Chapter 2 reviews the Data Quality Objectives 
(DQO) and Data Quality Assessment (DQA) process necessary in the design 
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1 INTRODUCTION 

The environmental movement of the 1960s and 1970s resulted in the 
creation of several laws aimed at protecting the environment, and in the crea-
tion of Federal, state, and local governmentagencies charged with enfofcing 
these laws. In the U.S., laws such as the Clean Air Act, the Clean Water Act, 
the Resource Conservation and Recovery Act, and the Comprehensive 
Emergency ~ i s p o o s eand Civil Liability Act mandate some soa of monitor-
ing or comparisonto ensure the integrity of the environment. Once you start 
talking about monitoring a process over time, or comparing ohsenratious 
from two or more sites, you have entered the world of numbers and statistics. 
lo fact, more and more environmentalregulations are mandating the use of 
statistical techniques, and several excellent books, guidance documents, and 
journal articles have been publislied to explain how to apply various statisti-
cal methods to environmentaldata analysis (e.g., Berthow and Brown, 1994; 
Gibbons, 1994; Gilbert, 1987; Helsel and Kirsch, 1992: McBean and Rovers, 
1998; Ott, 1995; Piegorsch and Bailer, 1997; ASTM, 1996; USEPA, 
1989a,b,c; 1990; 1991a,b,c; 1992a,b,c,d; 1991a,b,c; 1995a,b,c: 1996a,b; 
1997qh). Only a very few books attempt to provide a comprehensive lreat-
ment of environmental statistics in general, and even these omit some impor-
tant topics. 

This explosion of regulations and mandated sitistical analysis has re-
sulted in at least four major problems. . Mandated proLedures or those suggested in guidance documents are 

not always appropriate, or may be misused (e.g., Millard, 1987a; 
Davis, 1994; Gibbons, 1994). 
Statistical methods developed in other Iields of research need to be 
adapted to environmentaldata analysis, and thwe is a need for inno-
vative methods in environmental data analysis. 

. .The backgrounds of people who need to analyze environmental data 
vary widely, fmm someone who took a statistics course decades ago 
to someone with a PI1.D. doing high-level research. 
There is no single software package with a comprehensivetreatment 
of euvironmentalstatistics: 

This book is an attempt to solve some of these problems. It is a survey of 
statistical methods you can use to collect and analyze environmental data. It 
explains wlrd these methods'are, how to use them, and w l t m  you can frnd 
references to them. It provides insight into what to think about before you 
collect enviromnenkl data, how to collect environmental data (via various 
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ian of the lognormal distribution (see Equation (4.10)), so theme- 
rays smaller than the mean (see Figure 4.12). The second point is 
coefficient of variation of X, only depends 0110, the standard de- 
Y. 

mula for tlte skew of a lognormal distribntion can be written as: . .. . . 

; 

Skew = ~ C V+ C V ~  

et al., 1993). This equation shows that large values of the CV 
to very skewed distributious. As r gets small, the distribution 

:ss skewed and starts to resemble a normal distribution. Figure 
two different lognormal distributions characterized by the mean 

Two Lognormal Distributions 

4.20 Pmhabilitydensily functions for hM lognormal dislributions 

ameter Lognormal Distribution 

-parameter lognormal distribution is bounded below at 0. The 
teter lognorrtlal distribution includes a threshold parameter y 
it determines the lower boundary of the random variable. That 
g (X-y)has a normal distribution with mean p and standard de- 
len X is said to have a three-parameter lognormal distribution. 

4: Probability Distributions 179 
. . 

The threshold parsmeter y affects only the locatiod of the tluee-parameter 
lognormal distributioo; it has no effect on the variance or the shape of the 
distribution. Note that when y = 0, the three-parameter lognormal distribu- 
tion reduces to the two-parameter lognormal distribution. The three- 
parameter lognormal distribution is sometimes used in hydrology to model 
rainfall, stream flow, pollutant loading, etc. (Stediger et al., 1993). 

Binomial Distribution 

After the normal distribution, the binonrial distribution is one of the 
most frequently used distributions in probability and statistics. It is used to 
model the number of occurrences of a specific event in n independent trials. 
The outcome for each trial is binary: yeslno, snccess/failure, 110, etc. The 
bmomial random variable X represents the number of "successes" out of the 
n trials. lo enviroimental monitoring, sometimes the binomial distribution 
is used to model the proportion of obsewations of a pollitant that exceed 
some ambient or cleanup standard, or to compare the proportion of detected 
values at background and compliance units (USEPA, 1989a, Chapters 7 and 
8; U&A; 1989b, Chapter 8; USEPA, 1992b, p. 5-29; Ott, 1995, Chapter 4). 

The probability density (mass) function of a binomial random variable X 

x = px (I - ) - , x = 0.1, a . ,n (4.37)) 
here n denotes the number of trials ahd p denotes the probability of "snc- 

'' for each trial. It is common notation to say that X has a B(n, p) dishi- 

e first quantity on the right-hand side of Equation (4.37) is called the 
ioomial coefficient. It represents the number of different ways you can ar- 

range the x "successes" to occur in the n trials. The formula for the bino- 
mial coefficient is: 

n ! (4.38)(:I 
 = x!(n-

The quantity n! is called "n factorial" and is the product of all of the inte- 
gers between I and n. That is, 
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n !  = n(n - l ) ( n - z ) . . .  2 1 (459) 

Figure 4.5 shows die pdf of a B(1, 0.5) mndom variable and Figure 4.10 
shows the associated cdf. Figure 4.21 and Figure 4.22 show the pdf's of a 
B(10,O.S) and B(10,0.2) random variable, respectively. 

Z7re Mean and Varianceof the Binomial Disaibution 
The mean and variance of a binomial random variable are: 

E ( x )  = np 

var (x)= np (1 - p )  

(4.40) 

Ire 

# 

0 

4.21 

1 2 3 4 5 6 7 8 9 , 0 

Value of RandomVarisble 

Pmbability density functionofa B( Io ,Q.~)randomMriable 

The average number of successes in n trials is simply the probability of a 
success for one trial multiplied by the number of trials. The variance de-
pends on the probability of success. Figure 4.23 shows the function f (p) = 
p (1-p) as a hnction of p. The variance of a binomial random variable is 
greatest when the probability of success is %, and the variance decr&es to 0 
as the probability of successdecreases to 0 or increasesto I. 

Binomial Density with 
(size-10, prob=0.2) 

2-
Variance of Binomial Distribution 

-a-

7-
^ -
P--
a =. 

d 

-

P 
0 
a 
V1 
41 

r, 

X -

X-
0.0 

0.2 D4 0.8 0.6 1.0 

ValM of Random Variable P 

Ire 4.22 Probability density functionof a ~(10.0.2)random variabfe Figure 4.23 The variance of a B(1. p) random wrfableas a fundiono f p  
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<more about what all these Greek letters mean later in this chap- 
talk about the lognormal distribution. Also, in the next chapter 
about how we came up with a mean of 0.6 and a coefficient of 

0.5). 
lative frequency (density) histogram, Ute area of the bar is the 
~f falling in that interval. Similarly, for a continuous random 
probability that the random variable falls into some interval, say 
5 and 1, is simply the area under the pdf between U~ese two iu- 
ints. Mathematically, this is written as: 

~ r m a lpdf shown in Figure 4.7, the area under the curve between 
r about 0.145, so there is a 14.5% chance that the random vari- 
into this interval. 

'obability Density Functions 

8 display examples of all of the available probability distribu- 
;us and ENVLRONMENTALSTATS for S-PLUS. These probability 
can be used as models for populations. Almost all of these dis- 
n be derived from some kind of theoretical mathematical model 
omial distribution for binary outcomes, the Poisson distribution 
ents, the Weibull distribution for extreme values, the nom~al dis- 
sums of several random variables, etc.). Later in this chapter we 
in detail probability distributions that are commonly used in en- 
statistics. 

uce the binomial pdf shown iu Figure 4.5 using the 
4TALSTATs for S-PLUS pull-down menu, follow these steps. 

the 	 S-PLUS menu bar, make the following menu choices: 
ronmentalStats>frobability Distributions and Random 

0 ~bers>Plot 1)istribntion. This will bring up the Plot Distrihu- 
0 ?unction dialog box. 

:Distribution box, choose Binomial. In the size box, type 1. In 
V1 rob box, type 0.5. 
00 :OKorApply. 

le lognormal pdf shown in Figure 4.7, follow these steps 

4: Probability Distributions 147 

1. 	 On Ute S-PLUS menu bar, make the following menu choices: 
EnvironmentslStaWrobability Distributions and Random 
NnmbervPlot Distribution. This will bring up the Plot Distribu- 
tionFunction dialog box. 

2. 	 In the Distribution box, choose Lognormal (Alternative). In the 
mean box, type 0.6. In the cv box, type 0.5. Click OK or Apply. 

Command 
To produce the binomial pdf shown in Figure 4.5 using the 

ENVIRONMENTAL~TATSfor S-PLUS Command or Script Window, type this 
command. 

To produce Ute lognormal pdf shown in Figure 4.7, type this command 

pdfplot ("1norm.alt". list (mean=0.6, cv=0.5) ) 

Beta Density with Non-central Beta Density with 
(shapel=Z, shape2=4) (shapel=l, shapeZ=l, ncp=l) 

Y J 

Binomial Density with Cauchy Density with 
(size=lO, pmb=0.5) 

W ,
d 


zz .Zd 


f .  ., 
-z .  -ld 

0 1 2 3 4 5 6 1 8 9 i O  40 -20 -10 0 10 . W 30 
Value orW o r n  Vaisble V a M  d R a n d mVallsbk 

Figure 4.8 Probability distributions in S-PLUSand ENVIRONMMTALSTATSfor S-PLUS 
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'Igure 4.8 (continued) Probabilily distributions in S-PLUS and Figure 4.8 (continued) Probability distributions in S-PLUS and 

ENVIRONMENTALSTATSfor S-PLUS ENYIRONMENTALSTATSlor SPLUS 
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0 ,re 4.8 (continued) ProbabililydirbibUSonr in S-PLUS and 
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Figure4.8 (continued) Probablity dishibutions in S-PLUS and 
ENV~RDNMENTALSTATSb r  S-PLUS iI 
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Figure 4.8 (continued) Probability distributions In S-PLUSand 

ENVIRONMENTALSTATSforWLUS 

ting Values of the Probability Density Function 

:an 	 use S-PLUS and ENVIRONMENTALSTATS for S-PLUS to compute 
:of the pdf for any of the built-in probability distributions. As we 
!quation (4.11, the value of the pdf for the binomial distribution 
Figure 4.5 is 0.5 for x =  0 (a tail) and 0.5 for x =  1 (a head). From 
(4.2), you can show that for the lognormal distribution shown in 

7, the values of the pdf evaluated at 0.5,0.75, and 1 are about 1.67, 
' 0.35, respectively. 

Impute the values of the pdf of the binomial distribution shown in 
.5 using the E N V I R O ~ A L S T A T S  for S-PLUS pull-down menu, 
ese steps. 

In the S-PLUS menu bar, make the following menu choices: 
ZnvironmentalStafs>Probability Distributions and Random 
qumbers>Density, CDF, Quantiles. This will bring up the Densi- 
ies, Cumulative Probabilities, or Quantiles dialog box. 
'or the Data to Use buttons, choose Expression. In the Expression 

P cox, type 0:l. In the Distribution box, choose Binomial. In the size 

0 ,ox type 1. In the prob box Q e  0.5. Under the Probability or 
luautile group, make sure the Density box is checked. 

-	 01 :lick OK or Apply. 

01 
ute the values of the pdf of the lognormal distribution shown in 

P 7 for the values 0.5, I, and 1.5, follow these steps. 

h the S-PLUS menu bar, make the following menu choices: 
:nvironmentalStats>Probability Distributions and Random 
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Nnmbers>Density, CDF, Quantiles. This will bring up the Densi- 
ties, Cumulative Probabilities, or Quantiles dialog box. 

2. 	 For the Data to Use buttons, choose Expression. In the Expression 
box, type c(0.5, 0.75, 1). In the Distribution box, choose Log-
normal (Alternative). In the mean box type 0.6. In the cv box type 
0.5. Under the Probability or Quantile group, make sure the Density 
box is checked. 

3. 	 Click OK or Apply. 

Conrmand 
To compute the values of the pdf of the binomial distribution shown in 

Figure 4.5 using the S-PLUS Command or Script Window, type this com- 
mand. 

To compute the values of the pdf of the lognormal distribution shown in 
Figure 4.7 for the values 0.5, 0.75, and I ,  type this command using 
ENVIRONMENTALSTA~Sfor S-PLUS. 

CUMULATIVE DISTRIBUTION FUNCTION (CDF) 
The crrntrrlntive dishibrctiort function (cdfl of a random variable X, 

sometimes called simply the distribution function, is the function Fsuch that 

F (x)= ~r (X S x) 	 (4.4) 

for all values of x. That is, F ( x )  is the probability thnt the random variable 
x i s  less than or equal to some number x. The cdf can also be defined or 
computed in terns of the probability density function @df) f as 

F (x)= Pr (X < x) = f (t) dt (4.5) 
* 

for a continuous distribution, and for a discrete distribution it is 

F (x)= P ~ ( X< x) = x f (xi) (4.6) 
xi<x 

X 

http:0.5,0.75


I 
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Ire 4.9 illustrates the relationship between the probability density func- 
and the cumulative distribution function for the lognormal distribution 
vn in Figure 4.7. 

Lognormal Density with 
(mean=0.6, cv=0.5) 

Lognormal CDF with 
(rnean=0.6, cv=0.5) 

9 -1 
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You can use the cdf to compute the probability that a random variable 
will fall into some specified interval. For example, the probability that a 
random variable Xfalls into the interval r0.75, 11 is given by: 

For a contiauous random variable, the probability tlmt Xis exactly equal to 
0.75 is 0 (because the area under the pdf between 0.75 and 0.75 is O), but for 
a discrete random variable there may be a positive probability of X taking on 
the value 0.75. 

Plotting Cumulative Distribution Functions 

Figure 4.10 displays the cumulative distribution function for the binomial 
random variable whose pdf was shown in Figure 4.5. Figure 4.1 1 displays 
the cdf for the lognormal random variable whose pdf was shown in Figure 
4.7. 

We can see from Figure 4.10 that the cdf of a binomial random variable 
is a step function (which is also true of any discrete random variable). The 
cdf is 0 until it hits x= 0, at which point it jumps to 0.5 and stays there until 
it hits x = 1, at which point it stays at I for all values of x at 1 and greater. 
On tbe other hand, the cdf for the lognormal distribution shown in Figure 
4.11 is a smoatb curve that is 0 below x = 0, and rises towards 1 as x 
increases. 

Menu 
To produce the binomial cdf shown in Figure 4.10 using the 

ENVLRONMEN~ALSTATSfor S-PLUS pull-down menu, follow these steps. 

4.9 Relationship belween the Pdl ana the cdf for a lognormal disbibution 



ring Groups to Sfandards 

Chapters 2 and 6, we introduced the idea of the hypothesis testing 
work. In Chapter 6 we discussed three tools you can use to make an 
tive decision about whether contamination is present or not: prediction 

aYPOTHESIS TESTING FRAMEWORK 

introduced the hypothesis testing framework back in Chapter 2. Our 

Contamination 

Mistake: 
Contamination Type 1Elror Correct Decision 

(Probability=a) (Probability = I-$) 
Mistake: 

Correct Decision Type I1 Error 

Hypolhesis testing framework lor deciding on the presence 01 
contaminabn in lhe envhonment when the null hypothesis is 
-nocontamination" 

Step 5 of the DQO process (see Chapter 2), you iisually link the prin-

365 


7.1 
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Cleanup site significantly above background levels?" then yo 

1 reformulate this question as "Is the average concentration of 

it at the Cleanup site greater than the average concentration of 

il at a Reference site?" 

polhesis tesi or signi/ic&ce test is a formal mathematical 

objectively making a decision in the face of uncertainty, and 


I to answer a question about the value of a population 

d h~po1heshtest about a population parameter 8 (the 

lull hypothesis 

Ha : 8 = go 

e two-sided altemative hypothesis 

Ha : e f eo 

(pronounced "H-naught") denotes the null hypothesis that the 
is equal to some specified value 8, (thetatanaught). A 

7otlresis test is used to test the null hypothesis 

Ho : e > eo 

e lower one-sided alternative hypothesis 

Ha : 0 < go 

?Per one-sided I~jpothesis terf is used, to test the null hypothesis 

H, : e s eo 

2 upper one-sided alternative hypothesis 

Ha : 0 > eo 

'mental monitoring, we are almost always concerned ollly with 
I hypotheses, such as 'The average concentration of TCCB in the 
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site is less than or equal to 2 ppb," or ‘"The average value 
than or equal to 7." We rarely con- 

on a test sfntktic, say T, which is 
d from a random sample from the population If Tis "too exireme," 
decide to reject the null hypothesis in favor of the alternative hy- 

we are interested in determining whether the 
ibution is less than or equal to some hypothesized value 

that the true mean is bigger than b. This is simply the 
upper hypothesis given in Equations (7.5) and (7.6) with 8 re-
p. We can use Student's t-statistic, which we will discuss in more 
r in this chapter, to test this hypothesis. 	 Student's t-statistic is a 

sample mean minus the hypothesized mean: 

the sample mean is an unbiased estimator of the true mean L&if the 
ean is equal to p,, then the sample mean is "bouncing around" p, and 
atistic is "bouncing around" 0. The distribution of the t-statistic under 
I1 hypothesis is shown in Figure 5.9 in Chapter 5 for sample sizes of 
5, and m. On the other hand, if the true mean p is larger than Po, then 
ple mean is bouncing around p, the numerator of the t-statistic is 
g around p-po,and the t-statistic is bouncing around some positive 

I. So if the t-statistic is "large" we will probably reject the null hy- 
's in favor of the alternative hypothesis. 

r ic vs. Nonparametrie Tests 

test, the test statistic T is usually some estimator of 0 
hifted by subtracting a number and scaled by dividing by a uum- 
e distribution of Tunder the null hypothesis depends on the dis- 
the population (e.g., n o d ,  lognormal, Poisson, etc.). For a 

arametric or distribution-free test, T is usually based on the ranks of 
e random sample, and the distribution of Tunder the null hy- 

distribution of the population. 

of this statistic under the null hypothesis does not 
end on the distribution of the two populations. 
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le I a n d  Q p e  1IErro r s  (Signifkance Level and Power) 

%s stated above, a hypothesis test involves using a test statistic computed 
I data collected from an experiment to make a decision. A test statistic is 
~ d o mquantity (e.g., some expression involving the sample mean); if you 
at the experiment or get new observations, yon will often get a different 
e for the test statistic. Because you are making your decision based on 
value of a random quantity, you will sometimes make the "wrong" 
:e. Table 7.2 below illustrates the general hypothesis testing framework; 
rimply a generalization of Table 7.1 above. 

Reality 
Your Decision H, True H. False 

Mistake: 
Reject Ho Type I Enw Correct Decision 

(Probability=a) (pmbability = I-p) 
Mistake: 

30 Not Reject H, Correct Decision Type U Enor 
(Probability=p) 

Table 7.2 	 The framework of a hypothesis test 

s we explained in Chapter 2, statisticians call the two kinds of mistakes 
:an make a Type I error and a Type II error. Of course, in the real 
I, once you make a decision, you take an action (e.g., clean up the site 
nothing), and you hope to find out eventually whether the decision you 
was the correct decision. For a specific hypothesis test, the probability 
king a Type I error is usually denoted with the Greek letter a (alpha) 
:called the signifca~rrce-level or a-level of the test. This probability is 
alled thefalsepositive rate. The probability of making a Type II error 
d l y  denoted with tbe Greek letter p (beta). 'Illis probability is also 
the fake negative rate. The probability I-p denotes the probability of 

:tly deciding to reject the null hypothesis when in fact it is false. This 
, ..31l1ty is called theporver of the hypothesis test. 
~ t ethat in Table 7.2 above the phrase "Do Not Reject H," is used in- 
3f "Decide H. is True." This is because in the framework of hypothe- 
ting, you assume the null hypothesis is true unless you have enough 

I-' o e  to reject i t  If you end up not rejecting H, because of the value of 
0 est statistic, you may have unknowingly committed a Type I1 error; 

cn e alternative hypothesis is really true, but you did not have enough 
ce to reject H,.cn :ritical aspect of any hypothesis test is deciding on the acceptable val- 

0 	 the probabilities of making a Type I and Type U error. This is part of 
of the DQO process. The choice of values for a and fl is a subjec- 
~Ucydecision. The possible choices for a and P are limited by the 

i
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I 

:I 
:I 

sample size of the experiment (usually deuoted n), the variability inherent in 
the data (usually denoted a), and the magnitude of the difference between 
the null and alternative hypothesis (usually denoted S or A). Conventional 
choices for a are I%, 5%, and lo%, but these choices should be made in the 
context of balancing the cost of a Type I and Type U error. For most hy- 
pothesis tests, there is a well-defmed relationship between a,8, n and the 
scaled diBerence 81- (see Chapter 8). A very important fact is that for a 
specified sample size, if you reduce the Type 1emr,  then you increase the 
Type II enor, and vice-versa. 

P-Values 

When you perform a hypothesis test, you usually compute a quantity 

called the p-value. Thepvalue is the probability of seeing a test statistic as 

extreme or more extreme than the one you observed, assuming the null hy- 

pothesis is true. Thus, if the p-value is less than or equal to the specified 

value of a (the Type I error level), yon reject the null hypothesis, and if the 

p-value is greater thana,you do not reject the null hypothesis. For hypothe- 

sis tests where the test statistic has a continuous distribution, under the null 

hypothesis (i.e., if rfo is h e ) ,  the p-value i s  uniformly distributed between 0 

and 1. When the test statistic bas a discrete distribution, the p-value can take 

on only a discrete number of values. 


To get an idea of the relationship between p-values and Type I errors, 
consider the following example. Suppose your friend is a magician and she 
has a fair coin (i.e., the probability of a "bead" and the probability of a "tail" 
are both 50%) and a coin with beads on both sides (so the probability of a 
head is 100% and the probability of a tail is 0%). She takes one of these 
coins out of her pocket, begins to flip it several times, and tells you the out- 
come after each flip. You have to decide which coin sbe is flipping. Of 
course if a flip comes up tails, then you automatically know she is flipping 
the fair coin. If the coin keeps coming up heads, however, how many flips in 
a row coming up heads will you let go by before you decide to say the coin 
is the two-beaded coin? 1 

Table 7.3 displays the probability of seeing various numbers of heads in a I 
row under the null hypothesis that your friend is flipping the fair coin. (Of 
conse, under the alternative hypothesis, all flips will result in a head and the 
probability of seeing any number of heads m a row is 10O0/..) Suppose you 
decide you will make your decision after seeing the results of five flips, and 
if you see T =  5 heads in a row then you will reject the null l~ypotbesis and 
say your friend is flipping the two-beaded coin If you observe five heads in 
a row, then the p-value associated with this outcome is 0.0312; that is, there 
is a probability of 3.12% of getting five heads in a row when you flip a fair 
coin five times. Therefore, the Type I error rate associated with your deci- 
sion rule is 0.03 12. If you want to create a decision rule for which the Type I 
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rate is no greater than I%, then you will have to wait until you see the 
m e  of seven flips. If your decision rule is to reject the nnll hypothesis 
seeing T = 7 heads in a row, then the actnal Type I ermr rate is 0.78%. 
u do see seven heads in a row, the p-value is 0.0078. 

7.3 Theprobabilityofseeing rheads in a mw ofafa#coinin ~ i l i i  

r this example, Ule power associated with your decision lule is the 
bility of col~ectly deciding your friend is flipping the two-headed coin 
in fact that is the one she is flipping. Tbis is a special example in 
the power is equal to loo%, because if your friend really is flipping 

o headed coin then you will always see a head on each flip and no mat- 
tat value of T you choose for the cut-off, you will always see T heads 
aw. Usually, however, there is an inverse relationship between the Type 
Type !.Ierror, so that the smaller you set the Type I error, the smaller 
wer of the test (see Chapter 8). 

ionship between Hypothesis Tests a n d  Confidence Intervals 

nsider t l~e  nnll hypothesis shown in Equation (7.1), where 0 is some 
(tion parameter of interest (e.g., mean, propottion, 95'"ercentile, etc.). 
is a one-to-one relationship between hypothesis tests concerning 0 and 
idence interval for this parameter. A (I-a)100% confidence interval 
onsists of all possible values of 0 that are associated with not rejecting 

' 
1hypothesis at significance level a. Thus, if you know how to create 

k' 	 deuce interval for a parameter, you can perform a hypothesis test for 
rameter, and vice-versa. Table 7.4 shows the explicit relationship be- 
hypothesis tests and confidence intervals. 

0 	tenever you report the results of a hypothesis test, you should almost 
0 	 report the corresponding confidence interval as well. This is because 

0 	have a small sample size, you may not have much power to uncover 
t that the null hypothesis is not true, even if there is a huge difference 
n the postulated value of 0 (e.g., 8. 5 5 ppb) and the true value of 0 
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(e.g., 0 = 20 ppb). On the other hand, if you have a large sample size, you 
may be very likely to detect a small difference between the postulated value 
of 8 (e.g., Bo< 5 ppb) and the true value of 0 (e.g., 0 - 6 ppb), but this dif-
ference may not really be important to detect Confidence intetvals help 
you sort out the i m p o m t  distinction between a statistically signified& 
difference and a scientijically meaningful difference. 

-	 Test Alternative Corresponding RejectionRnle 
Type ~ypothesis Confidence Inlwval Bued on Ci 

Two-sided 	 8#0. Two-sided LCL > Bo 01 
[ L a ,  UCLl UCL < 0. 

Lower 8<8, upper UCL < 8. 
[-=, UCLl 

upper 8>8, Lawer LCL > 0. 
ILCL, =I 

Table 7.4 Relationship between hypothesis lesls and wnndence intervals 

OVERVIEW OF UNIVARIATE HYPOTHESIS TESTS 
Table 7.5 summarizes the kinds of univariate hypothesis tests that we will 

talk about in this chapter. In Chapter 9 we will talk about hypothesis tests 
for regression models. We will not discuss hypothesis tests for multivariate 
observations. A good introduction to multivariate statistical analysis is John- 
son and Wichern (1998). 

Ondample TvvoSamples Multiple Samples 
Goodness-of-Fit 
Pmpoltiou Proportions Proportions 
Location Locations Locations 
Variability Variability Variability 

Table 7.5 Summary of the kinds of hypothesis lesls discussed in this chaplel 

GOODNESS-OF-FIT TESTS 
Most commonly used parametric statistical tests assume the observations 

in the random iample(s) come from a normal population. So how do you 
know whether this assumption is valid? We saw in Chapter 3 how to make a 
visual assessment of this assumption using Q-Q plots. Another way to verify 
this assumption is with a goodness-of-fit tesf which lets you specify what 
kiud of distributibn yon think the data come from and then wmpnte a test 
statistic and a p-value. 
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:oodness-of-fit test may be used to test the null hypothesis that the 
me from a specific distribution, such as "the data come &om a normal 
ition with mean 10 and standard deviation 2," or to test the more gen- 
II hypothesis that the data come from a particular family of distribu- 
uch as "the data come from a l o g n o d  disizibution." Goodness-of-
:are mostly used to test the latter kind of hypothesis, since in practice 
:ly know or want to specify the parameters of the distribution. 
~ractice, goodness-of-fit tests may be of limited use for very large or 
nall sample sizes. h o s t  any goodness-of-fit test will reject the null 
esis of the specified distribution if the number of observations is very 
iuce "real"data are never distributed according to any theoretical dis- 
Dn (Conover, 1980, p. 367). On the other hand, with only a very small 
r of observations, no test will be able to determine whether the obser- 
appear to come fmm the hypothesized distribution or some other to-

fferent lookiag distribution. 

lor Normality 

3 commonly used tests to test the null hypothesis that the observations 
?om a nonnal distribution are the Shapiro-Wilk test (Shapim and 
965), and the Shapiro-Francia test (Sbapiro and Francia, 1972). The 
1-Wilk test is more powerlid at detecting short-tailed @latykunic) and 
I distributions, and less powerful against symmetric, moderately long- 
fleptokurtic) distributions. Conversely, the Shapiro-Frayia test is 
owerfid against symmetric long-tailed distributions and less powerful 
short-tailed distributions (Royston, 1992b; 1993). These tests are 

red to be two of the very best tests of normality available 
Mino, 1986b, p. 406). 

:apiro-WiIkTest 

!Sbapiro-Wilk test statistic can be written as: 

a 
0 x,i,denotes the i'hordered observation, aiis the ithelement of the 

.ector 4 and the vector 5 is defmed by: 

4 
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wbere T denotes the transpose operator, and m is the vector of expected val- 
ues and v is the variance-covariance matrix of the order statistics of a ran-
dom sample of size n from a standard normal distribution. That is, the val- 
ues of g are the expected values of the standard normal order statistics 
weighted by their variance-covariance matrix, and normalized so that 

-aTa- = 1. It can be &own thatthe W-statistic in Equation (7.8) is the same 
as the square of the sample correlation coefficient between the vectors a and 
go: 

wbere 

(see Chapter 9 for an explanation of the sample correlation coefficient). 
Small values of w yield small p-values and indicate the null hypothesis of 

normality is probably not true. Royston (1992a) presents an approximation 
for the coefficients 5necessary to compute the Shapiro-Wilk W-statistic, and 
also a transformation of the W-statistic that has approximately a standard 
normal distribution under the null hypothesis. Both of these approximations 
are used inENVIRONMENTALSTATSfor S-PLUS. 

TheShapiro-FrancinTest 

Sbapiro and Francia (1972) introduced a modification of the W-test that 

depends only on the expected values of the order statistics (@ and not on the 
variance-covariance matrix (V): 
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biis the itbelement of the vector gdehoed as: 

1 authors, including Ryan and Joiner (1973), Filliben (1975), and 
:rg and Bmgham (1975), note that the W1-statistic is intuitively 
ing became it is the squared sample correlation coefficient associated 
normal probability plot. That is, it is the squared correlation between 
lered sample values _xt, and the expected n o m i  order statistics 5 

isberg and Bingham (1975) introduced an approximation of the Sha- 
ancia W'-statistic that is easier to compute. They suggested wing 
cores (Blom, 1958, pp. 68-75; see Chapter 3) to approximate the ele- 
)f m: 

?i is the imelement of the vector g defmed by: 

7: Hypothesis Tests . 375 

and cp denotes the standard normal cdf. That is, the values of the elements of 
-m in Equation (7.13) are replaced with their estimates based on the usual 
plotting positions for a normal distribution (see Cbapter 3). 

Filliben (1975) proposed the probability plot correlation coeficient 
(PPCC) test that is essentially the same test as the test oE Weisberg and Bing- 
ham (1975), but Filliben used different plotting positions. Looney and 
Gulledge (1985) investigated the characteristics of Filliben's PPCC test us-
ing various plotting position formulas and concluded that the PPCC test 
based on Blom plotting positions performs slightly better than tests based on 
other plotting positions. The Weisberg and Bingharn (1975) approximation 
to the Shapiro-Francia W'-statistic is the square of Filliben's PPCC test sta- 
tistic based on Blom plotting positions. Royston (1992~) provides a method 
for computing p-values associated with the Weisberg-Bingham approxima- 
tion to the Shapiro-Francia w '-statistic, and this method is implemented in 
ENVIRONMENTALSTATS for S-PLUS. 

The Shapiro-Wilk and Shapiro-Francia tests can be used to test whether 
observations appear to wme from a nor& distribution, or the transformed 
observations (e.g., Box-Cox transformed) come from a normal distribution. 
Hence, these tests can test whether the data appear to come from a normal, 
lognormal, or three-parameter lognormal distribution for example, as well as 
a zero-modified normal or zero-modified lognormal distribution. 

Example %I:  Testing fheNorn1aIiq7 of the Reference Area TcCB Dafa 
In Chapter 3 we saw tbat the Reference area TcCB data appear to come 

from a lognormal distribution based on histograms (Figures 3.1, 3.2, 3.10, 
and 3.11), an empirical cdf plot (Figure 3.16), normal Q-Q plots (Figures 
3.18 and 3.19), Tukey mean-difference Q-Q plots (Figures 3.21 and 3.22). 
and a plot of the PPCC vs. A for a variety of Box-Cox transformations (Fig- 
ure 3.24) Ifere we will formally test whether the Reference area TcCB data 
appear to come from a normal or lognormal distribution. 

Assumed 
Distribution Shapiro-%Via(W) Shapiro-Francia (W') 
N o 4  0.918 (p=0.003) 0.923 lp=0.006) 
~~~~~~l 0.973 Ip=o.55) 0.987 1~=0 .78)  

Table 7.6 	 Results of tests for normalily and lqgnormality for the Referenu, area 

TcCB data 


Table 7.6 lists the results of these two tests. The second and thud col- 
umns show the test statistics with the p-values in parentheses. The p-values 
clearly indicate that we should not assume the Reference area TcCB data 
come from a normal distribution, but the assumption of a lognormal distri- 




