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ABSTRACT: Changes in analytical procedures, and detection limits with sub-detection limit data censoring, 
can have profound effects on trend analysis and add tedium and uncertainty to the process. 

Less accurate methods early in the record may produce not only high-biased data but also greater variance. The 
consequence of this is an artificial induction of a down-trend. In datasets with multiple procedure changes 
embracing relatively short time periods, there can be considerable difficulty in judging whether the data from 
adjacent time blocks can be coalesced to increase the length of the time period being analyzed and hence 
increase trend detection power. In the absence of paired comparisons between 'old' and 'new' procedures, 
combining adjacent data blocks adds uncertainty to any conclusions drawn. 

The consequence of changing (usually lowering) detection limits with data censoring at the detection limits 
may induce artificial (usually down) trends. Data censoring may be of concern when using non-parametric 
statistics because multiple tied values may result, the consequence of which may be the paradoxical situation of 
significant trend but a zero slope. 

For trend detection, it is preferable that there should be no analytical procedure changes without compelling 
reason, and networks should be designed with this in mind. 

If a thorough assessment of the consequences of multiple analytical procedure changes and multiple detection 
limits with sub-detection limit data censoring is not made during data analysis, the consequence may be that the 
data analyst is merely measuring changes in the monitoringprogram not the environment. 



INTRODUCTION 

During the course of long-term data collection there can be many analytical method changes and 
improvements, and changing detection limits. What are the consequences of these changes for trend detection? 
This question is not new but there is little in the literature which addresses it using a long-term environmental 
dataset. .Much of the literature uses simulated data. 

However, there are some notable exceptions. Shapiro and Swain (1983) found that a much-reported decline in 
silica content in Lake Michigan was, in fact, due to changes in analytical method and as a consequence it was 
not safe to conclude anything about long-term trends. Alexander et al. (1993) corrected stream water quality 
trends for laboratory measurement bias using US Geological Survey (USGS) data and parametric statistics. 
They found an improvement in the accuracy of trend slope estimates but a significantly lower precision as 
reflected by a reduced number of detected trends after correction. 

If there is a change in analytical procedure it may be possible to calibrate the old data with respect to the new 
method using both methods employed over a period of time. Newell et al. (1993) examined the consequences 
of using such overlapping analytical data, and compared the technique with that of blocking data (using data in 
discreet time blocks) before and after an analytical method change. They concluded that the power of the 
blocked test exceeded the power of the calibration approach only when the calibration error was extremely 
large. Newell and Morrison (1993) investigated method changes and found statistically significant differences 
for different filter types, instruments, and sampling techniques. 

Aside from method changes, there are problems associated with analytical detection limits. And data censoring 
(i.e., not reporting values determined to be less than a "detection limit") is commonly carried out. The effects 
of data censoring have been discussed by, for example, Gilliom et al. (1984), Hughes and Millard (1988), 
Millard and Deverel (1988), Bell (1990), Helsel and Cohn (1988) and Porter et al. (1988). Be11 (1990) showed 
that data censoring masked an upward trend in site pollution. 

Data censoring can be a major concern in trend detection analysis, which is exacerbated if the detection limit 
changes over time (normally downwards). If, for a particular determinand, the detection limit changes over time 
from say, 10 gm*)to 2 gmJ part way through the data record, and the data are censored, a concentration of, say, 
3 gm-3initially reported as < 10 gm'3 would now be reported as 3 gm". More importantly, if many of the data 
over the whole record are actually <2 gm-3, the data will be reported as 110 and then <2 gm", respectively. If 
the default is to set less-than values as half the detection limit (e.g., Ellis and Gilbert, 1980), we now have a 
record with a substantial number of equivalent values set at 5 gmgm3and then at 1 gtti3. The result of this is the 
introduction of a step trend in the record producing a monotonic down-trend overall. Small step-trends may be 
very difficult to observe visually on the time plot of the data. 

To avoid problems such as these, which may compromise trend detectability, Smith et al. (1996) cautioned that, 
once set up, the network (and this includes analytical methods) should remain unaltered. Of course, this 
necessitates that appropriate analytical methods are incorporated into the network at the outset. These will, in 
part, depend upon the objectives of the network, which must be very carefully considered in the design phase 
(e.g., Ward et al., 1990). Of course, over enough time, there will of necessity have to be some changes in, for 
instance, equipment, but it is essential to allow for such changes by, for example, paired method comparison so 
that historic data can be adjusted if required (see, for example Newell et al., 1993) 

Here, we examine the consequences for trend detection of changing analytical procedures for three 
determinands (turbidity, ammoniacal-nitrogen (NH,-N), and total phosphorus (TP)) at one river site in New 
York City's wide-ranging river and reservoir monitoring network, which started well over a decade ago. Trend 
detection was not the prime objective at that time and therefore not specifically designed for (and so, for 
example, the requirement incorporating unchanging analytical methods was not made). Several changes have 



been made to some of the methods and to detection limits (with data censoring) over the study period. We have 
used data obtained by the City's Department of Environmental Protection P E P )  to assess the consequences for 
trend detection of these changes over the period of record. Because many other agencies appear to be in a 
similar position, these findings are probably of much wider interest given the fact that there are many long-term 
records in existence and the perceived growing interest in trend analysis. It is the main purpose of this paper to 
highlight the issues referred to above; it is not the intent to solve some of the problems encountered. 

The determinands chosen for this study are a selection from a larger study by McCann (1999) whose objective 
was the development of a relatively simple, easy-to-use, "boiler plate" protocol for trend analysis for the whole 
DEP river and reservoir network. This incorporates 130 stream sites and 86 reservoir main sites with various 
sampling depths, three laboratories, and a multiplicity of determinands. 

APPROACH 

The Neversink River in New York State's Catskill Park was selected for study (McCann, 1999). This site 
(coded NK7A -USGS site S29) has good flow and extensive water quality records, and the water is relatively 
pristine and perceived to be relatively unchanging over the record period. 

Turbidity, NH,-N, and TP. data for this site were obtained from the New York City Department of 
Environmental Protection's extensive and well-maintained database. This database also records analytical 
methodology, with changes appended to each data request. However changes made to detection limits are not 
included in the record but can be obtained by examination of the raw data; values below detection limit are 
reported as "-X",where X is the detection limit. Such values were replaced by XI2 for the purposes of this 
study. There are no paired sets of overlapping data for any procedure changes. 

The initial analytical thrust consisted of producing temporal plots of the data from which potential outliers were 
observed. In the event, all possible outliers were bcluded in the dataset subsequently used because there were 
no reasons to exclude them. All outliers (i.e., 'high' values) were deemed the consequence of high flow. 

Following acceptance of a usable record, the data were analyzed as indicated in Figure 1. Trend analysis over 
time using ordinary linear regression is not usually appropriate for water quality data because the required 
assumption of normally distributed residuals is so often violated. (Smith and Maasdam, 1994). Also, it fails to 
account for seasonal components of variability, so that statistical power to detect trends can be greatly 
diminished. Consequently, the non-parametric Seasonal Kendall and Mann-Kendall tests for trends were used, 
together with their associated Seasonal Kendall (SKSE) and Sen Slope Estimators (SSE), respectively, to 
determine trend slopes. However, for comparison purposes and because it is readily available in software and 
therefore commonly used, linear regression was included where appropriate. Flow-adjustment was also carried 
out and trend analysis performed for both raw and flow-adjusted data. The presence of seasonality was 
assessed using the Kruskal-Wallis test (a=0.05). 
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Figure 1. 	 Flow diagram depicting temporal trend analysis protocol. "Standardized slope estimates" means 
simply the annual slope divided by the median of the raw data. 

The software W ~ ~ t a t ~ l u s O  (obtainable from Intelligent Decision Technologies, Ltd., Longmont, Colorado) was 
used for the study. Its flow-adjustment technique is limited to linear regression of logilog transformed data, 
which is not always the most appropriate for water quality data (Smith et al, 1996); the preferred LOWESS 
smoother technique (Smith et al. 1996) is not included in the software. Using this software, it was not possible 
to conduct linear regression on the flow-adjusted data. 

To put the trends into context, slope estimates were standardized by dividing the slope by the period median 
and expressing the result as an annual percentage change. 

Flow data (mean daily flows) were obtained from the USGS. 

Following Smith et al. (1996) we ignore the effects of serial correlation which we justify by confining our 
attention solely to the period of record and not considering changes in the underlying processes causing the 
trend (Loftis et al., 1991). We have used conventional hypothesis testing with associated p values whilst being 
mindful of the potential problems of this procedure (e.g., Goodman, 1993). 



RESULTS AND DISCUSSION 

Firstly, the flow data were plotted against time and the temporal trend assessed. There were no changes in flow 
measurement procedure over the study period which could potentially interfere with this assessment. There was 
no statistical significance (see Table 1) using all the trend assessment techniques although the slopes were of a 
magnitude (e.g., 1.2% per annum by the SKSE method-13% over the record) to suggest that a component of 
any trend in the determinands examined could be a consequence of flow. 

Results for each determinand are presented as three graphs: (a) the raw data (including a notation when there 
were analytical procedure and detection limit changes); (b) the raw data plus trend lines for the whole record; 
(c) the raw data plus non-parametric trend lines for the dataset partitioned into appropriate time blocks. The 
term 'analytical procedure' changes includes method, instrument, filter type, autoanalyzer detector, and 
laboratory location changes. 

WQStatPlus does not allow for export of flow-adjusted data so only raw data are plotted here. All plots were 
made using the IbleidagraphTM software, and trend lines were translated from the WQStatPlus plots. For 
clarity, the SKSE slopes are the only non-parametric slopes presented in the figures; the SSE slopes were 
generally very similar. The SKSE slopes are placed on the graphs such that their mid points coincide with the 
period median value. 

Turbidiq (~igurb 2) 
Seasonality is apparent from the graph, supported by the Kruskall-Wallis test @ < 0.05), with lower values 
tending to appear in the summer period coincident with lower flows. There are six analytical procedure 
changes over the record period. In mid-1992 there is an apparent data 'discontinuity' which does not seem 
linked to reported procedural changes. This 'discontinuity' is also apparent in the flow-adjusted data. Because 
the turbidities reported are low, and the procedure itself is somewhat subjective, it is possible that this 
'discontinuity' is linked to personnel changes in the laboratory at that time. But we cannot be certain. A visual 
assessment of Figure 2a suggested that the dataset should be divided into two approximately equal time blocks 
coinciding with this 'discontinuity'. There was no visual evidence to suggest that the data be further partitioned. 
Further statistical analysis to assist here is beyond the scope of this study. We acknowledge that the inclusion of 
many method changes may, to some extent, invalidate our analysis because we have no readily available 
assessment of the effects of these changes on data integrity. 

Figure 2b shows the least squares fit plus the flow-adjusted (FA) SKSE slope for the full record. It is of interest 
to note that the although the least squares fit indicates a down-slope approximately twice that of the two non- 
parametric methods, it is classed as not significant (p > 0.1) whereas, in this instance where there is seasonality 
and a non-normal data distribution, the non-parametric slopes are highly significant (Table 1). This is because 
much of the variance has been removed by the deseasonalizing procedure and the higher values at the start of 
the record has had a much bigger effect on the least squares procedure than on the non-parametric test which 
uses ranks. 

Figure 2c depicts the FA SKSE slopes for the partitioned dataset (with an end 6192 partitioning point). A 
different picture now emerges although it should be borne in mind that the trend detection power is now smaller 
than for the full dataset and, on average, p-values will be higher. Whereas using the whole dataset revealed 
strong negative slopes over the full period of record, we now see two positive slopes with the FA SKSE slope 
for the 4/87-6192 block being non-significant, whereas the slope for the 7192-12197 block is highly significant. 
In this instance, the two up-slopes have been masked by the effect of the down-stepping 'discontinuit), in the 
middle of the full time block. Further examination of the 7192-12197 dataset shows an additional potential 
'discontinuity' in mid-1995 with no 0.INTU values being obtained afterwards. At this point, we cannot say if 
this is due to some unknown laboratory effect or an environmental change. This latter block was further 
partitioned into two approximately equal, but very short, time blocks which showed non-significant down- and 



Table 1. Summary statistics for trend analysis for raw (R) and flow-adjusted (FA) data. For each slope type, the slope (un 

Determinand Period n Data Linear regression slope Sen Slope Seasonal Kend 
(units) type 

Annual %change Sig. Annual %change sig.3 Annual % chang 

Discharge 4187-12197 278 R +73 +2.4 ns +32 +1.0 ns +36 11.2 
(11s) 

Turbiditv 4187-12197 278 R -0.073 -14.6 ns -0.028 -5.6 *** -0.032 -6.8 

-

*** -0.322 -8.2(mdm3) FA -0.299 -7.5 
4187-10189 66 R -0.73 -11.8 ns -0.652 -10.5 t -0.984 -15.9 

FA -0.658 -10.6 * -1.019 -16.4 
11189-12197 210 R -0.365 -9.7 ns 0.000 0.0 * -0.144 -3.8 

FA -0.147 -3.9 t -0.162 -4.3 
11189-8193 100 R +0.365 +9.1 ns 0.000 0.0 ns 0.000 0.0 

FA +0.060 +1.5 ns -0.093 -2.3 
9193-12197 110 R -0.256 -8.5 ns 0.000 0.0 ** 0.000 0.0 

FA -0.099 -3.3 ** -0.117 -3.9 
% changelannum = Annual change x 100lperiod median. 
Statistical significances: ns =non significant ,p30.1; * = srgnificant, p<0.1; ** = significant,p<0.05; *** = srgnificant,p<O.OI. 

WQStatPlus tests at confidence levels up to 99% for the Mann-Kendall test, whereas it tests at confidence levels up to 95% for the 
Mann-Kendall test. Seasonal Kendall test. Kruskall Wallis test (a= 0.05). 
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Figure 2. Trends in turbidity: a) raw data with analytical changes noted; b) raw data with overall trend lines; c) 
raw data for partitioned datasets. The non-parametric slopes drawn are the flow-adjusted Seasonal 
Kendall Slope Estimate (FA SKSE) with each slope's mid-point located at the period median. The 
trend test significances are marked adjacent to the arrow locating the slope. It was not possible to 
export the flow-adjusted data from the software. 



up-slopes, respectively with the SKSE (Table 1). It is too early to judge the potential effects of the two 
procedural changes in 1997. 

It should be noted that the log-log flow-adjustment produced a lower 2 value than did the simple raw data 
linear regression, 0.17 vs 0.31, however it was not possible to perform a flow-adjustment in WQStatPlus using 
raw data. 

The Mann-Kendall trend test yielded a highly significant trend for the raw data for the period 7192-12197 but 
the associated SSE produced a zero slope. This apparent paradox (a significant trend test but zero slope) was 
noted by Smith et al (1996) when examining trend statistics from the first five years of data from the New 
Zealand National Water Quality Monitoring Network. The explanation was addressed by McBride and Loflis 
(1994) who pointed out that the slope estimator is not very appropriate in the presence of many tied values (as 
can happen in the case of many "less than" values) because of the mechanics of the test procedures. Flow 
adjustment has presumably removed most of the tied values by making small and different adjustments to these 
values because of differing flows at sampling time. 

Ammoniacal N (NH,-N) (Figure 3) 
The concentrations during the first 18 months are higher than the rest of the dataset (Figure 3a). This was not 
caused by flow issues (the flows in this early period were not unusual) but appear to be the consequence of the 
analytical method used at that time. No seasonality is apparent in the plot, confirmed by the Kruskall-Wallis 
test. There are seven analytical procedure changes over the record period and two changes in detection limit. 
In the period 6/88 to 12/93 there are many data having the same value. The lower value (0.005 g/m3) is half the 
detection limit; the others are reported to 2 decimal places because of the requirements of the database during 
this period. 

A visual assessment of Figure 3a suggested that the dataset should be divided into three periods with the first 
period (up until the end of 5/88) being discarded because the data appear unreliable when compared with the 
rest of the dataset. In 06/88 there was a major methodological change in ammonia analysis. Apart from the 
consequences of the change in detection limit, there is no visual evidence to suggest that the data be further 
partitioned. Again, further statistical analysis to assist here is beyond the scope of this study. At the beginning 
of 1994 and 1995 the changes in detection limit (from 0.01 to 0.002 and then to 0.005 g/m3) are apparent from 
the record. These are noticeable in Figure 3a but more so in Figure 3c which has an expanded ordinate scale. 
The concentrations from early 1994 to the end of the record (12197) are consistently lower than those preceding 
1994 suggesting an improved laboratory technique. 

Figure 3b depicts a trend analysis for the full record. In both cases there are highly significant and substantial 
down-trends. Flow-adjustment (for the non-parametric tests only) showed no substantial effect. This is not 
surprising given that the log-log plot is virtually horizontal (? = 0.0006); for the raw data, = 0.01. The 
effects on slope of the 4/87-5188 data are marked for the linear regression but less so for the non-parametric 
slopes (Table 1). 

For the dataset minus the early probably unreliable data (6188-12/97), there is an apparent (highly significant) 
downtrend (Figure 3c and Table 1). This is all accounted for by the detection limit changes noted; when the 
dataset is further partitioned (but omitting a period 1194-1/95) we see two horizontal slopes. Both non-
parametric tests (and least squares regression) indicate non-significance 0,> 0.1). 
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Figure 3. Trends in ammoniacal nitrogen (NHx-N): a) raw data with analytical changes noted; b) raw data with 
overall trend lines; c) raw data for partitioned datasets (note scale change). The non-parametric 
slopes drawn are the flow-adjusted Seasonal Kendall Slope Estimate (FA SKSE) with each slope's 
mid-point located at the period median. The trend test significances are marked adjacent to the arrow 
locating the slope. The 2195-12197 FA SKSE line has been upwardly displaced from its correct 
position (virtually horizontal at 0.0025 g/m3), for clarity. It was not possible to export the flow- 
adjusted data from the software. 



Total Phosphorus (TP) (Figure 4) 
Seasonality is apparent in Figure 4a, confirmed by the Kruskall-Wallis test. There are five analytical procedure 
changes over the record period and one change in detection limit. Major analytical equipment changes in late 
1989 and 1993 appear to produce 'discontinuities' in the data. The change in detection limit is apparent in early 
1988 @om 10 to 2 mg/m3). A visual assessment of Figure 4a suggested that the dataset should be divided into 
four blocks coincident with the change in detection limit and the two analytical changes (at end 10189 and 
beginning 9/93) which appear to cause discontinuities in the data. This would create two unacceptably short 
blocks in the early, already short, time period (4187-11189). As a consequence, the dataset was divided into 
three blocks, the first block incorporating the detection limit change to show a change in the very short time as 
a probable consequence. Apart from the obvious consequences of the change in detection limit, there was no 
evidence to suggest that the data be further partitioned. Further statistical analysis to assist here is beyond the 
scope of this study. 

Figure 4b shows the analysis for the whole record. For both trend lines shown, there are highly significant and 
substantial down-trends. Flow-adjustment (for the parametric tests only) had no effect on the outcomes. As 
with NH,-N, this is not surprising given that the log-log plots are virtually horizontally (?= 0.0004). For the 
raw data, ? = 0.18; this would have been a preferable flow adjustment method, were it available within the 
software used. 

In Figure 4c the dataset is partitioned into three blocks. The first block (4187-10189) also incorporated a major 
drop in detection limit and so, not surprisingly, a substantial down-trend was found. Test significance is only 
apparent for the non-parametric tests (Table 1). 

For the two remaining blocks (11189-8193 and 9193-12197) combined, only the non-parametric tests show 
significance but with the SSE showing a paradoxical zero slope for the raw data. For the 11/89-8193 block, 
there are no trends shown by any of the trend test techniques although the least squares analysis gives a 
substantial slope; the non-parametric slopes are zero for the raw data but small and different for the SSE 
(positive) and SKSE (negative) for the flow-adjusted data. For the second block (9193-12/97), both non- 
parametric tests show significant trends with the paradoxical zero slope. The zero slopes disappear with flow- 
adjustment as was found for turbidity, as a probable consequence of the removal of multiple tied values. We 
now see slight, significant, negative slopes (3-4% per annum) in both cases. We note that for the FA SKSE 
there is a down-slope over the 11189-12197 block and down-slopes over the two partitioned blocks (1 1/89-8193 
and 9193-12197) lending support to a down-trend in stream TP since 11/89, although we cannot rule out a 
potential confounding influence because of the two procedural changes in the last year of the record. 
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Figure 4. Trends in total phosphorus (TP): a) raw data with analytical changes noted; b) raw data with overall 
trend lines; c) raw data for partitioned datasets (note scale change). The non-parametric slopes drawn 
are the flow-adjusted Seasonal Kendall Slope Estimate (FA SKSE) with each slope's mid-point 
located at the period median. The trend test significances are marked adjacent to the arrow locating 
the slope. It was not possible to export the flow-adjusted data from the software. 



CONCLUSIONS 

We have used three actual water quality datasets to examine the effects on trend detection of changing 
analytical procedures and detection limits with sub-detection limit data censoring. Several points have emerged 
from this study which are of importance for water authorities, and others, in possession of a long data time 
series and who are contemplating trend analysis. 

1. 	 Such changes can have strong effects on trend analysis and add tedium and uncertainty to the process. As a 
consequence, a simple, easy-to-use protocol is not possible and much interpretation of the data is required. 

2. 	 Less accurate methods early in the record may produce not only high-biased data but also greater variance. 
The consequence of this is an artificial induction of a down-trend. Such data are therefore of little value in 
trend detection. 

3. 	 In datasets with multiple procedure changes embracing relatively short time periods, say of the order of a 
few years, there is considerable difficulty in judging whether the data from adjacent time blocks can be 
coalesced to increase the length of the time period being analyzed, thus potentially increasing trend power. 
In the absence of paired comparisons between 'old' and 'new' procedures, combining adjacent data blocks 
adds uncertainty to any conclusions drawn. For trend detection, the default assumption must be that there 
should be no analytical procedure changes to the network, and networks must be designed with this in 
mind. 

4. 	 The consequence of changing (usually lowering) detection limits with data censoring at the detection limits 
induces artificial (usually down) trends. Censoring of data is therefore a real issue. A detected value below 
detection limit is still a better estimate of "truth" than the statement "< detection limit". For trend detection, 
reported below detection limit concentrations notwithstanding their larger error, are still of much greater 
value than using a substitute value, e.g., half the detection limit. Data censoring is of concern when using 
non-parametric statistics because of the production of multiple tied values. 
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