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Robert W. SMITH

When appropriate data from regional reference locations are available, tolerance-
interval bounds can be computed to provide criteria or limits distinguishing reference from
nonreference conditions. If the limits are to be to applied to'locations and times beyond
the original data, the data should include temporal and spatial variation and the tolerance
interval calculations should utilize a random crossed or nested ANOVA statistical design.
Two computational methods for such designs are discussed and evaluated with simulations.
Both methads are shown to perform well, and the adverse effect of using an improper design
modei is demonstrated. Three real-world applications are shown, where tolerance intervals
are used to (1) establish a reference threshold for a benthic community potlution index, (2)
set criteria for chemnicals in sediments, and (3) establish background thresholds for survival
rates in sediment bioassay tests. Some practical considerations in the use of the tolerance
intervals are discussed.

Key Words: Bioassay, Bootstrap; Calibration; Pollution index; Sediment criteria; Simu-
lation.

1. INTRODUCTION

Environmental monitoring and regulatory activities focused on 'determining the pres-
ence of impacts or recovery often involve comparisons with reference or background con-
ditions. Reference conditions are usually characterized by indicators and other relevant
variables measured at regional locations assumed 1o represent reference conditions (Bloom
1980; Hughes, Whittier, Rohm, and Larson 1990; Hughes 1995). The resulting data can
be used to establish criteria or distinguishing reference from nonreference conditions. It is
important to consider and intelligently choose among the analytical options available for
establishing these limits.

In an effort to determine impacts, it is a common practice to use ANOVA statistics
to compare indicator means for potentially impacted locations with the indicator mean for
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RANDOM-MODEL TOLERANCE INTERVALS 75

the reference locations. Given natural and random variability, the mean indicator values at
different locations within regional reference areas will differ from the overall reference mean
(Hurlbert 1984; Wiens and Parker 1995), so deviation from the overall reference mean is not
sufficient to distinguish reference from nonreference. Thus, traditional ANOVA methods
will often be inappropriate when comparing potentially impacted locations with referencs,

The reference data will cover a range of indicator values, and some type of comparison
with this range is more appropriate since it incorporates the expected differences in indicator
values among the reference locations. Using the actual upper or lower limit of the data range
as a standard of comparison for reference conditions would be risky due to uncertainty
associated with sampling error. Alse, a single unusual value in the sample data could
greatly affect the value of the limit used for comparison. A limit incorporating sampling
error and corresponding to a relevant quantile toward a tail of the reference data distribution
would be more useful (Splitstone 1991; Kilgour and Somers 1998). Such a limit would be
a tolerance-interval bound (Tiahn and Meeker 1991; Vardeman 1992). Applications using
tolerance intervals for comparison with reference conditions have invoived monitoring of
contaminants in groundwater (Gibbons 1994), soil, vegetation, and snow (Allen and Jones
1998} and benthic infaunal community parameters (Smith 1995, 1998; Smith and Bernstein
1996).

A tolerance-interval bound is simply the upper or lower coufidence-interval bound of a
quantile of the underlying data distribution. When increasing indicator values are positively
correlated with impact, one could choose a quantile (say .90) toward the upper end of the
distribution to defipe a limit. The tolerance-interval bound would then be the upper bound
of a 1 — o confidence interval for the .90th quantile. Here « is the selected probability or
risk that the defined bound {(computed from the sample data) does not cover the actual ,90th
quantile of the underlying data distribution.

-Standard parametric and nonparametric tolerance-intervzl computations (Woodward
and Frawley 1980; Gilbert 1987; Hahn and Mecker 1991; Portugal 1992; Vangel 1994; Allen
and Jones 1998} are appropriate when the sample data values are independent. Relatively
independent observations would be expected in cases where single observations are taken
from multiple randomiy selected locations during a single time period. Alternately, the
sample couid involve single observations at randomly chosen times at a singie location.

When using tolerance intervals to define limits to reference conditions and these limits
will be compared to future measurements, the data sampie should contain both temporal and
spatial random variability. This requires a sample including multiple times and locations.
If the data sample inveolves only a single sampling event covering locations in space, only
spatial variability will be included in the data distribution. For future observations, this
increases the risk that natural changes over time will be confused with impact.

When the data include both spatial and temporal random variability, the data values
within the different leveis of time or location will tend to be positively correlated. In this
case, the standard tolerance-interval computations assuming data independence will be in-
appropriate. Computational methods for computing tolerance intervals from data containing
both spatial and témporal variability are not presently well developed, and I am unaware
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76 _ R. W. SMITH

of any publications where such methodology has been applied to real data. In this article,
I describe two ¢computational methods for dealing with data containing both temporal and
spatial random variability. The first method is that of Bagui, Bhaumik, and Parnes (1996).
The second method, which involves a parametric bootstrap approach (described in reports
by Smith and Riege 1998; Hunt et al. 1998), is new,

The objectives of this article are to

(1) describe the tolerance-interval calculations,

(2) use simulations to evaluate the computational methods,

(3) demonstrate the penalty paid when standard tolerance intervals are inappropriately
used,

(4) provide examples of reai-world applications using the methodology, and

(5} make some practical suggestions for applying tolerance intervals with these meth-
ods.

2. STATISTICAL MODEL

In this section, the statistical model for the tolerance interval calculations is discussed.
When the data contain both_spatial and temporal variability, a useful statistical model will
often be a two-way crossed ANOVA model with time and space as random factors (Davis
1994). The model is compietely random sinice, in the target applications, we are interested
in generalizing our results to other locations and times not in the sample from which the
bounds are computed (Jackson and Brashers 1994). Beckman and Tietien (1989) derive
two-sided tolerance intervals for a random balanced crossed ANOVA design. However,
one-sided limits that can be applied to unbalanced data sets will be most useful for the
intended applications. One-sided intervals are appropriate for parameters where impact is
associated with either an increase or decrease in parameter values (as is most often the
case). Also, unbalanced data are common with environmental data sets. The Bagui et al.
(1996) and the parametric bootstrap methods are the focus of this article because they are
suitable for computing one-sided tolerance-interval bounds with unbalanced data.

In cases where completely different locations are sampled at each sampling time, a
random nested model with locations nested within times will be appropriate. However,
the simulation resuits in this article show that the tolerance-interval bounds for the nested
model can be compuied as a highly unbalanced crossed design, so the nested design is not
emphasized. ‘

The crossed statistical mode! is now more formally described. For simplicity, the statis-
tical model is described in terms of rows, columns, and cells of a table describing the design.
The different levels of factor | are represented by rows, levels of factor 2 are represented by
columns, and combinations of the factor levels are represented by the cells, An observation
with a two-way crossed random model can be decomposed as

Yigk = p+ & + B; + Y5 + eijn,
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RANDOM-MODEL TOLERANCE INTERVALS 77

where ;;« is the kth observation in the cell defined by the 4th row and the jth column, L
is the general mean, J; is the effect of the observation being in row 4, (J; is the effect of the
observation being in column j, y;; is the interaction effect of row 4 with column 7, and e;;
is the error, or the deviation of the observation from its expectation (the sum of the other
terms in the model). The e;;x, d;, 8;, and y;; are assumed to be independent random factors
following N(0, 02), N(0, 03), N(0, 03), and N(0, o2), respectively.

It should be emphasized that the model and associated computations discussed in the
‘next section apply to the situation where single future observations are to be compared with
the computed tolerance-interval bounds. The statistical model would need to be modified
to apply to comparison with averaged values. Using a model for single observations is the
most flexible because it can apply to all future observations regardless of sample size at any
one location and time.

3, COMPUTATION OF THE TOLERANCE INTERVAL BOUNDS

The general formula for a parametric one-sided upper tolerance-interval bound is
bpa =T + kpas, (3.1)
and for a one-sided lower tolerance-interval bound
bpo =% — kpas, (3.2)

where ¥ is the estimate of the overall mean and s is an estimated standard deviation. The &
is computed as the mean of all data values in the sample, and the computation of s vaties,
depending on the method being used. The methods described in the following sections differ
only in the manner in which the &, , and s values are estimated.

The ky .. is computed so that the resulting b, . estimates will fail to cover the underlying
pth population quantile o proportion of the time, thus

Plhpo < gl =
for an upper bound and

Plbpa 2 g =

for a lower bound, where g, is the underlying pth quantile of the population distribution
(usually unknown). Thus, « is the rate of noncoverage of g, by the b, . estimates. The
tolerance interval bound is equivalent to a one-sided upper or lower confidence interval
bound on g, (Hahn and Meeker 1991). '

3.1 THE STANDARD METHOD

When the sample consists of independent measurements and the data are from a normal
distribution, the standard method can apply. In Equations (3.1} and (3.2), s is the computed

12873



7 R. W. SMITH

standard deviation of the sample data values and

kp,a = tl—a,n—-l,)\/\/ﬁ:

where ¢1—q,n-1,5 is the 1 —  quantile of the noncentral ¢-distribution with n - 1 degrees
of freedom and a noncentrality parameter of . Here n is the sample size and A = z,n1/?,
with 2z, being the absolute value of the pth quantile of the standard normal distribution,

3.2 THE BAGUI ET AL. (1996) COMPUTATIONAL METHOD

This method can be applied to any random model, but the computations specific to
the random crossed model are shown here. In Equations (3.1) and (3.2), s is the estimated
standard deviation of the mean, computed as

= , (3.3)

116} +ng63 + nad2 + né?

§=8z=
where 3% is the estimated variance component for factor 1 (rows), &% is the estimated
variance component for factor 2 (columns), c‘r?! is the estimated variance component for the

interaction between factors T and 2, and &;"' is the estimated error variance. In (3.3),

r c ” < ™ T
n1=an,, n2=Zn_2j, m:Zanj, and n=ZZnij,
=1 j=t =1 j=1 i=1g=1
where n,; is the number of observations in the row ¢, column j cell, n;. is the total number
of observations in row 4, n.; is the total number of observations in column 7, and r and ¢
are the numbers of rows and columms, respectively.
The kyp o is computed as

kpa = teadfhs ' {3.4)

which is the 1 — o quantile of the noncentral {-distribution with df degrees of freedom and
a noncentrality parameter of A. Here, df is the approximate degrees of freedom associated
with the estimation of 52 (Satterthwaite 1946; Bagui et al. 1996), which is
df = %
~ [M{(MSD)2/dfusp + [M{(MSB)|? /dfuss + [RM(MSG)?/dfusc "
MSD is the ANOVA mean square for the rows, M SB is the ANOVA mean square for the
columns, and M SG is the ANOVA interaction mean square. The dfyisp, dfuss, dfuse
are the degrees of freedom associated with the estimation of the respective mean squares
and

(3.5)

2
3z

~ MSD+MSB+ MSG'
The noncentrality parameter A is estimated as

N=zpy[ (03 + 03+ 83 +62) /sd, (3.6)

h

where z, is the absolute value of pth quantile of the standard normal distribution.
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3.3 TuE PARAMETRIC BOOTSTRAP METHOD

With this methocl 8 in Equations (3.1) and (3.2) is the estimated standard deviation of
the data vaIu_es, computed as

s =/8%+ 563+ 32 + 52 (37
The value for k. is computed with the following procedure:

(1) The initial values for g, 03,03, 02, and o are set equal to Z,53, 83,93, and 62
105,05 q 51930y

respectively.

(2) We assume that the values for 4, o3, 02, 02, and o2 are known exactly, and the pth
quantile (for an upper bound) of the underlying data distribution is computed as
@y = b + 2p(0F + 05 + 02 + 02)}1/2, where z, is the pth quantile of the standard
normal distribution.

(3)- N, sets of simulated data are created using g, 05, orﬁ, , and o2, The simulation
method is detailed in the Appendix

(4) For each of the N; data sets, %;, 63, U_Bu 7.,, and &2, (i = 1 to Ny) are computed.
From the computed variance components, ; is computed using Equation (3.7).

(5) A chosen ky, ., value is used along with all Z; and s; to compute a set of Ny bounds
(bp,a,:) using Equation (3.1).

(6) For the bounds computed in step 5, the rate of noncoverage of g, by all the bounds in
the setis compuied as g = m/Np, where v is the number of times that by o ; < ¢p
{for an upper bound).

(7) Steps 5 and 6 are repeated for a series of kp » values. The & ,, value producing the
minimal value of |ag — o is the final k, , value used in Equation (3.1).

Steps 5--7 are similar to the algorithm used by Davies and Gather (1993) to compute a
constant (similar to &, .} for a robust outlier-detection technique that is, in principle, very
similar to a tolerance interval. In step 7, a successive interpolation procedure was used to
zero inon a kp o that produces a small value for jors — orf. This procedure involved repeatedly
bracketing the minimum |ae — o for successive series of potential &, o values. For each
successive series, the range of ky o values decreased and the interval between each &y o
vaiue in the series was decreased by one half. The process was terminated when |az — ¢
reached a tolerance vatue (.5/N2) or a maximum number of iterations were exceeded (99).

3.4 ESTIMATION OF VARIANCE COMPONENTS

For the present application, the Henderson method I (Searle, Casella, and McCulloch
1992) was used to compute the variance component estimates because it is appropriate
for unbalanced data, the mean squares used in Equation (3.5) are available from the
computations, and the variance components can be computed rapidly (as required for
simulation and calibration). This method can produce negative variance components, which
are treated as zeros in the computations.
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80 R. W. SMITH

4. EVALUATION OF THE METHODS WITH SIMULATIONS .

Simulations are used to evaluate the performance of the methods described above. For
the tolerance-interval bounds computed from simulated data, the noncoverages of known
population percentiles are compared with the nominal o levels. If the methods are working
well, the noncoverage should approximate the nominal « level. The following steps describe
the simulation procedure:

(1) For a simulation experiment, values are chosen for y, 03,03, 02, and 02, o, and p.
The desired sampling design is defined by specifying the numbers of rows, columns,
and cell replicates in the model.

(2) Since the values for 4, 03,03, 02, and o2 are known exactly, the actual pth quantile
(for an upper bound) of the underlying data distribution can be computed as
p = pu+ 2p(0F + 0} + 0% + o2)1/2, where z, is the pth quantile of the standard
normal distribution. -

(3) Ny sets of simulated data are created using chosen values for 4, 03,03, 03, and o2,
The simulation method is detailed in the Appendix,

(4) Foreachof the Ny datasets, &, 63;, 65;, 52; and &2, (4 = 1to Np) are computed and
used to compute a by, ., ; value. This step simply involves computing the toierance-
interval bounds (bp,«;), using the method being evaluated, to each of the Vg data
sets. .

(5) The rate of noncoverage of g, by the by, ., ; values is compuied as oy = /Ny, where '
m is the number of times that b, o ; < ¢, over all Ny simulated data sets. Since the
rate of noncoverage of gy, is supposed to equal @, g should be approximately equal
to q if the method of computing by o is accurate and Ny is a sufficiently large value.

5. CALIBRATION

Both the computational and bootstrap tolerance-interval methods described above
are approximations. With the Bagui et al. (1996) computaticnal method, the variance
components used in (3.3) and (3.6) are estimates, so the coverage of the pth quantile
by by« is not assured to be 1 — a. In addition, the formula for degrees of freedom in
(3.5) is only approximate, and with an unbalanced design, the mean squares used in (3.5)
are not independent as assumed (Milliken and Johnson 1984). The bootstrap method also
treats variance component estimates as known values, and the bounds should reflect the
corresponding uncertainty.

Using the evaluation technique described in Section 4, preliminary simulation
experiments indicated that the computational method almost always produced noncoverage
of the pth quantile at a rate less than o and the parametric bootstrap tended to produce
noncoverage at a rate greater than ¢. To provide b, o values where the noncoverage of
the bounds is closer to «, a bootstrap calibration method using the approach of Efron and
Tibshirani (1993, chap, 18) was developed as follows:
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Figure 1. An Example of the Calibration Interpolation Procedure Where the Nominal o = .05.
Here the final bound 45 computed with o' = .082 to obtain the desired nominal a of .05 for the
computational method.

(1) For each of a series of chosen ¢; values, the procedure of Section 4 is appiied, with
o = a;, Ng = N1, and using the computed %, 62, 53,62, and 63 values as the
initial mean and variance components. The procedure will produce an ag; (= o)
value for each ;. ‘ _

(2) The a; value corresponding to oy = « is chosen as the new nominal ¢, which
will be called o', With the computational method, o is compuﬁ;d by interpolation
(Figure 1). With the booistrap method, the a; value corresponding to the cvp; closest
to o is used as o',

(3) With the computational methed, the variance components and the mean in step 1
are used to compute ky, o/, 53, and the final bound b, . With the bootstrap method,
a final ko is first computed as the mean of the kp or; (j = 1 to ;) values
generated in the calibration procedure. Then b, o+ is computed from s (using the
variance componerits in step 1), Z, and the final kp ..

With the computational method, it is known that the noncoverage of the bounds is almost
always less than « before calibration, therefore all a; = « only calibrate upward. In the
analyses shown in the Resuits section, a; = @, + d, e + 2d., ..., + bd. For o < 031,
d = .005; for ¢ > .19, d = .02; otherwise, d = .01. This provided a greater range of «;
values for larger o.

The rates of noncoverage for the uncalibrated bootstrap method are not as predictable,
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Design A - Small, Unbalanced Design B - Balanced w. Repiication
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5{0 |o-|0 J0 [0 [T |3 410 |0 {0 [0 [0 O {2

Figure 2. The Numbers of Cell Replicates for the Designs Used t¢ Buvaluate the Methods.

so the o; include values both above and below «. The potential vatues used were
o; = .001, .0025, .605, .0075, .01, .02, .03, .. .,.10,.15, .20, . . ., .50.

The maximum o; used in this series was 3a.

6. DESIGNS FOR METHODS EVALUATION

To demonstrate the performance of the methods over a range of sampling designs, the
tolerance-interval methods are evaluated (see Section 4) using the multiple sampling designs
shown in Figure 2. Design A is evaluated over a range of variance components, p, and o
values. The other designs assess the effect of design and for the most part are evaluated for
a single set of variance components, p, and @ values, The logic for the choice of designs is
discussed in the Results section.

7. RESULTS

The simulation results evaluating the methods (Section 4) are in Tables 1—4. The designs
used are described in Figure 2. The tables show cg values, which should approach the
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nominal ¢ values used in the simulation. Where variance components are indicated, four
0/1/2 values are shown. These are the actual four variance components used for the
simulations. The order of variance components is 03, 0%, 02, and o2, respectively. For
example, 1101 indicates that 0§ = 1, 03 = 1,02 = 0,and 02 = 1.

For the computational method, Ny = 3,000 (nurober of simulations, Section 4) and
M 1,000 (number of calibration simulations, Section 5). For the bootstrap method,
Np = 2,000, Ny = 300, and N3 = 300 (number of simulations to compute each kp o,
Section 3.3). To speed up the simulations, the values set for [V, and N; were the minimum
numbers that produced a reasonably stable resuit. In practice, higher values for V; and N3
can be used since the process will not be repeated N, times, as was the case when evaluating
methods.

In the model A scenario, the numbers of rows and columns, and therefore the degrees of
freedom, are low. Near worst-case performance from the methods would be expected in this
kind of situation. Table 1 shows that the bootstrap and calibrated computational methods

]

Table 1. Sirnulation «g Values for Design A Over a Range of Variance Component Scenarios. In all
simulations, o = .05 and p = .50. The rows are ordared by the computational with calibration

rasulls.
Variance Computationat Computational
components Bootstrap with calibration without calibration Standard

o001 0.022 0.004 0.001 0.051
0011 0.030 0.012 0.002 0.098
0010 0.021 0.028 0.011 0.205
011 0.060 0.034 0.013 0.214
1112 0.053 0.035 0.014 0.209
1011 0.048 0.036 0.5 0.206
1222 0.055 0.036 0.013 0.225
1122 0.055 0.038 0.014 0.192
o101 0.085 0.041 0.017 0.230
1001 0.080 0.041 . 0.018 0.235
2112 0.067 0.043 0.019 0.228
1212 0.075 0.045 0.018 0.237
1121 0.062 0.046 0.021 0.237
1111 0.060 0.047 0.019 0.256
100 0.040 0.047 0.047 0.465
1000 0.036 0.048 0.048 0.464
2122 0.058 0.049 0.018 0,242
1100 0.031 0.050 0.039 0.388
2121 0.048 0.053 0.026 0.265
i 0.068 0.054 0.023 0.270
1010 0.052 0.056 0.028 0.313
1221 0.087 0.056 0.025 0.264
2212 0.055 0.058 0.021 0.267
2229 0.050 0.058 0.031 0.274
1110 0.055 0,061 0.034 0.330
0110 0.067 0.065 0.033 0.316
2111 Q077 Q.066 0.032 0.283
1211 0.062 0.068 0.035 0.278
2211 0.060 0.070 0.035 0.292

Mean 0.055 0.046 .023 0.259
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Table 2. Simulation «g Values for Design A Over a Range of Nominal o Values. In all simulations,
p = .90 and the variance components are 1111,

Computational Computational ’

Nominal o Bootstrap with Calibration without Calibration Standard
0.01 0.018 0.011 0.001 0.126
0.03 0.048 0.021 0.008 0.198
0.05 0.080 0.047 0.019 0.256
0.07 0.096 0,063 0.029 . 0.279
0.10 0.098 0.085 0.050 0.322
0.20 0.221 0.197 0.118 0.422
0.30 0.285 0.307 0.218 0.491
0.40 0.385 0.398 0.317 0.552

Table 3. Simulation o Values for Design A Qver a Range of p Values. 1n all simulations, o = .05 and
the variance components are 1111.

Computational Computational
P Bootstrap with Calibration without Caifbration Standard
0.60 0.056 . 0.059 0.034 G.240
0.70 0.061 0.061 0.032 0.250
0.29 0.083 0.055 0.027 0.258
0.90 0.060 0.047 0.019 0.256
0.95 0.055 0.041 0.016 0.247
0.99 0.066 0.035 0.017 (.243
Mean 0.060 0.050 0.024 0.249

Table 4. Simulation ag Values for Designs B~F. In all simulations, p = .90 and o = .08,

Variance Computational Computational
Dasign components Bootstrap with Calfbration without calibration Standard
B 1t 0.046 0.051 0.026 0.337
c 1110 0.054 © 0.053 0.030 0.224
D 1111 0.081 0.061 0.028 0.295
E 1111 0.048 0.048 0.022 0.205
F 11 0.047 0.044 0.024 0.157
Maan 0.051 0.051 0.026 0.244

work very well on the average, with mean oy values very near the desired value of .05. The
generally low oy values for the uncalibrated computational method demonstrate the value of
the calibration procedure. The generally very high g values for the standard method show
the risk of appljﬁ?g the impropef?siatistical model when computing tolerance intervals.
When the variance components equal 0001, the standard method performs the best. This
result is not surprising since, when only the error variance component is greater than zero,
the observations will be independent, and the standard method is appropriate.

Resuits in Table 2 with design A show both the bootstrap and calibrated computational
methads again performing well for a series of nominal o values. Table 3 shows a similar
result for a series of p vaiues. Table 4 summarizes the results for some larger models.
Again, both the bootstrap and calibrated computational methods work very well. Design C
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represents a comimon situation, where at most a single replicate is taken at each location and
time. In this case, the error variance component cannot be estimated and will equal zero.
Results for designs E and F show that the degree of unbalance does not adversely affect the
methods. In fact, design E is essentially nested since sach level of 4 contains unigoe levels
of 8. This suggests that it is not necessary to formulate a separate computational model for
the nested design.

8. APPLICATIONS

Three applications are presented below. In the cases shown, the null hypothesis of
normality was accepted (p > .25) when a Shapiro—Wilk statistic was applied to the pertinent
data (Shapiro and Wilk 1963), so a parametric approach seemed justified. The sampling
designs included observations taken over time and space, so the two-way random crossed
model was appropriate. All computations were performed using the parametric bootstrap
method.

8.1 BenTHIC RESPONSE INDEX

A benthic response index (BRI) has recently been developed as an indicator of pollution in
the Southern California Bight (Smith et al., 2001). Index development was based on a large
calibration data set of benthic infaunal observations covering a wide area over several yearé
between 1973 and 1994. Using ordination analysis of these data (Smith and Bernstein 1985;
Bernstein and Smith 1986), 519 taxonomic cateéories {mostly species) were given pollution
tolerance scores. The index value for an observation is computed as the abundance weighted
average pollution tolerance score for all taxonomic categories found in that observation.
Higher index values indicate increasing pollution effects. Once the index was developed,
threshold index values were established to give ecological meaning to different levels of
the index. The first threshold of interest was that between reference and minimally affected
conditions, To define this threshold, 147 observations from the calibration data set were
chosen as reflecting reference conditions. The resulting design involved 4 years by 117
stations. Each cell of the design contained either zero or one replicate. The distribution of
index values is shown in Figure 3. The reference threshold was set at an index value of 25,
which was tolerance-interval bound for p = .90 and = .05.

Once the index reference threshold of 25 was established, it was of interest to examine
the index valves around Southern California sewage outfalls to see the possible spatial
extent and severity of outfall effects. Figure 4 shows a contour map of index values at one
outfall. The effect at the terminus of the outfall appears to be minimal and spatially limited.
Slightly elevated index values also appear in shallow water. Possible sources of impact in
the shallow area are the nearby Santa Ana River and Newport Bay.

8.2 SEDIMENT CRITERIA FOR CHEMICALS IN SaN FrRaNCISCO Bay

This project involved using chemical measurements from San Francisco Bay sediments
to characterize background or ambient conditions (Smith and Riege 1998). This information
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Distribution of Reference Index Values

-

glﬂ

5]

2]

£

N- II

il hihl |
—1135791114172023262932

Indlex Value

Figure 8. Distribution of BRI Index Values in Reference Areas of the Southern California Bight.
The p = .90, o = .05 upper tolerance-interval bound is 25, which was chosen as the upper threshold
for reference conditions.

Figure 4. Contour Map of BRI Values in Summer 1994 in the Vicinity of the County Sanitation
Districts of Orange County Outfall (From Smith 1998). The numbers on the map are BRI walues
at the respective locations. Contour lines for 25 and 30 are shown.
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would be useful in establishing future sediment criteria for protecting the Bay biological
resources. A data set with sediment chemical measurements from 36 locations and 13
sampling times was used to define the reference distribution. Each cell of the design
contained 0-3 replicates. Upper tolerance-interval bounds for a series of p values were
estimated. '

Interpreting the levels of chemicals in sediments is complicated by the fact that the
concentrations of most chemicals increase as the sediment particle size decreases, Thus, to
be useful, the tolerance-interval bounds need to vary with the sediment size. Metals showed
a monotonic increase in concentrations with increasingly finer sediments (% fines). For
some metals, the relationship was slightly nonlinear and there was a tendency for more
variability in the concentrations of finer sediments. A regression model that accommodates
such relationships (Chatterjee and Price 1977} is '

log(y: + ¢) = log(a) + fz; + log{e,),

where 3; is the 7th chemical measurement, x; is the % fines in the sediments associated
with measurement 4, log(a) is the intercept, 3 is the slope, log(;) is the residual, and cis a
constant added to all y; to prevent indeterminate values when g; = 0, or to provide a better
fitting model, Standard least squares linear regression was used to compute log{a) and 3.
The tolerance-interval bounds were computed from the residuals, which were adjusted for
the effect of sediment size by the Fz; term. The resulting tolerance-interval bound represents
a positive distance off the regression line predicting log(y; +¢). The tolerance-interval upper
bounds in the original concentration units were computed as

U, = elog(a)+,8:cg+u. —c

where U; is the upper bound for sediment ¢, « is the tolerance interval bound computed
from the residuals, and ¢ is the base of the natural logarithm. This model ignores the
uncertainties involved in estimating log(a) and 3, which are smail compared with the
variability associated with the residuals. )

Figure 5 shows the results for nickel. This application contrasts with the alternate approach
of defining limits based solely on chemical concentrations where environmental harm is
known to appear. Most of the values for nickel were above a level associated with toxicity in
test organisms (SFEI 1997). Itis very unlikely that a location in the bay can be cleaned upto a
completely nontoxic level for a very long period of time since mixing and sediment transport
will tend to restore background levels even after the metal is removed from an impacted
location. Thus, the tolerance-interval bounds could be used to indicate what sediment criteria
limits could be practicaily enforced.

8.3 IDENTIFICATION OF Toxic HoT SPOTS IN SAN FRANCISCO BAY

This study was a part of the California Bay Protection and Toxic Cleanup Program
(BPTCP). The initial focus of the program has been the identification of toxic hot spots in
fine sediments of the Bay (Hunt et al. 1998; Hunt, unpublished manuscript). Hot spots were
defined as localized areas where elevated concentrations of toxic pollutants are found in
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Figure 5. Plot of Nickel Values Versus Percent Fines of the Sediment (From Smith and Riege
1998). The solid line is the regression line, and the dotted lines are the upper tolerance-interval
bounds for p = .70,.75,...,.95 [labeled on the right), with & = .05. Concentration is in mg/kg.
Percent fines s percent sili plus clay.

association with adverse biological impacts. Bioassay tests with marine organisms were
used to measure biological impacts. However, bioassay tests from sediments in even the
cleaner parts of the Bay will usually show some toxicity. A screening tool was needed
to distinguish between background toxicity levels and more extreme toxicity, Reference
sediment data were obtained from five locations during three survey periods, with three
repiicates per location-survey. Four cells were empty, giving a total of 33 observations.
Several bioassay tests were applied to each sediment sample. ‘Tolerance-interval bounds
were computed trom the bioassay results to distinguish between background toxicity and
more seriously toxic potential hot spots.

The data distribution for the Ampelisca abdita bioassay is shown in Figure 6, Here the
data variable is a measure of survival, so adverse impacts are associated with lower survival
values, and lower tolerance-interval bounds for p < .50 are of interest, The computed
bounds for p = .01,.05.,.10, .16, and .20 were computed as 54.7, 65.3, 70.9, 75.1, and
77.5, respectively (o = .05). The choice of the value of p to use when screening sediments
for toxicity is a regulatory decision that has to balance environmental protection, cost and _
feasibility of cleanup, and poiitics.

9. DISCUSSION AND CONCLUSIONS

The simulation results show that both the bootstrap and computational (with calibration)
tolerance-interval methods work very well for the two-way crossed random design. They
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Figure 6. Distribution of Dioassay Results for the Amphipod Ampelisca abdita [After Hunt et al.

1998).

also show that using a standard tolerance interval when the crossed model is appropriate
can lead to very inflated rates of a.

Often, the assumption of normality of the underlying distribution will be untenable and
the parameiric computations will produce questionable bounds. If the observations are
independent, the nonparametric analogs of the standard method can be used. When the
crossed or nested model is appropriate, the following options can be considered:

(1) Transform the data to better approximate normality (Box and Cox 1964) before

(2

3

computing the tolerance intervals, However, for some data, no meaningful
transformation will produce sufficient normality. Also, if the data are transformed,
the back-transformed bounds should be examined closely. In practice, extreme
bounds that may not be usefui can sometimes result from this approach.

Presently, there is no nonparametric analog to the tolerance intervals with a crossed
or nested random design. One could go ahead and use nonparametric methods for
independent observations. To compensate for the fact that the observations are not
actually independent, a more extreme p value can be used in place of the planned p
value. The relative amount of adjustment needed will depend on the distribution of
variance components. For example, in Table 1, it is evident that, as the greater the
proportion of variance found in the error and interaction components, the closer the
coverage of the bounds is to the nominal o, meaning that less adjustment would be
needed.

At times, nonnormality is caused by one or a few outlier observations. From a
regulatory perspective, one would not want to set limits overly influenced by a
small number of outliers, which may be due to nnknown errors or conditions, Using
the outliers in the computations could lead to extreme tolerance-interval limits that
expose the environment to unreasonable risk. Thus, removal of outliers can produce
more environmentally conservative limits and aiso allow for use of parametric
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tolerance intervals if the outlier removal makes the assumption of normality more
tenable. '

(4) The parametric bootstrap computations could be modified to be appropnate for
different {(nonnormal) distributions.

Another assumption of the methods is that the levels of the factors and the replicates are
randomly selected. The analyst should carefully consider the possible effects of nonrandom
sampling on the resulting bounds. If the data are unrepresentatiiwe or some other imbalance
exists in the distribution in time or space, then balance may need to be restored by removing
or obtaining more data.

Frequently, a systematic form of sampling is used. If the reference locations or times are
in random order (Gilbert 1987) or in quasi-random order (Barnett 1991), the systematic
data can be used as if it were random without biasing the variance estimates. The degree
to which the data meet these criteria will mostly depend on the amount of autocorrelation
(Cliff and Ord 1981) among the locations and times. Autocorrelation will prevent the criteria
from being met. Often, the autocorrelation will decrease as the temporal or spatial distance
between the factor levels increases.

There are some indicators that both increase and decrease in response to poliution. For
example, measures of species diversity initially increase in value with moderate increases
in organic enrichment and then decrease as the enrichment increases further (Pearson and
Rosenberg 1978). In such cases, a two-sided tolerance interval would be useful. Rather than
use separate computations for two-sided intervals, it is simpler to compute both lower (with
p < .50} and upper (with p > .50) one-sided bounds. These bounds will be similar to the
bounds for a two-sided interval (Hahn and Meeker 1991).

It should be noted that tolerance intervals may not always be the most powerful approach
to impact assessment. When sufficient before- and after-impact data are available at
reference and impact locations, repeated measures ANOVA models can potentially provide
much more powerful tests (Green 1979, 1993: Bernstein and Zalinski 1983; Stewart-QOaten,
Murdoch, and Parker 1986; Faith, Humphrey, and Dostine 1991; Underwood 1991, 1993,
1994). However, when an impact is detected with a more powerful approach, the tolerance-
interval bounds for reference (if available) can help put the impact in perspective. For
example, if the indicator value at an impacted location is still inside or very near the
tolerance-interval bound, then the impact could be judged as minimal. Indicator values
further outside the reference bound would be associated with more serious impacts.

“Time is a random component-in the proposed tolerance-interval statistical model.
Interestingly, some of these repeated measure ANOVA models mentioned in the previous
paragraph consider time as a fixed factor (Green 1993; Underwood 1993, 1994), while
others consider time a random factor (Bernstein and Zalinski 1983; Stewart-Oaten et al.
1986). VanLeeuwen, Murray, and Urcjuhart (1996) include both a fixed temporal trend
component and a random time (year) component. The tolerance-interval statistical model
could be modified to include time as a fixed factor. However, when time is fixed, the 7 In
Equations (3.1) and (3.2) will need to be the mean for the time period of the observation
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being compared with the tolerance-interval bound. To estimate this mean, a sample of
spatial locations for the time period of each future observation would be required. Thus, the
tolerance-interval mode! with random time is more general in a sense that it can be applied
to observations whether or not there is any replication of locations during the time period
of the observation. ‘

As with tolerance intervals, prediction intervals (Whitmore 1986; Hahn and Meeker 1991;
Vardeman 1952) are also useful for statistically defining boundaries enclosing proportions of
the data distribution from which a random sample is taken. Prediction intervals define limits
that will apply to a specific chosen number of future observations and are very useful where a

_monitoring program is well defined with specific planned comparisons to determine impact
{Davis and McNichols 1987; Boswell, O’ Connor, and Patil 1994; Gibbons 1994, 1996). My
focus has been on applications where a limit is set and the number of future comparisons
to that limit is unknown. For this situation, tolerance intervals are more appropriate since
the tolerance-interval limits defined apply to all future observations regardless of the actual
number of observations this might involve.

The program used to compute tolerance intervals and evaluate the methods is available
upon request from the author.
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APPENDIX: DATA SIMULATION

This appendix briefly describes how simulated data are generated from a set of variance
components and a mean. First, a multivariate random normal generator (Johnson 1987) is
used to produce cell means in the sampling design. For a simulation, let M be an r x ¢
matrix of cell means for the crossed design, where » = number of rows and ¢ = number of
columns in the design. If m; is the ith column of M, then

m; = AY; + X,

where ¥; is an 7 x 1 column vector of N{0, 1) standard random normal deviates, X is an
7 x 1 column vector of N{u, 0%) random normal deviates, and A is an r X r matrix such
that A4’ = X. Here ¥ is an r X r variance—covariance matrix with af; + 2 in the diagonal
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and o'g in the off-diagonal. Matrix 4 is computed by Choleski factorization of Z. Once the
cell means in M are computed, the replicate values in each cell of the design are simulated.
A data value is simulated as an N(m;, 02) random normal deviate, where m;; is the cell
mean of the ith row and the jth column of M. The number of replicates simulated in each
cell equals the number of replicates in the sampling design.
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