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The Use of Random-Model Tolerance 

Intervals in Environmental 

Monitoring and Regulation 


Robert W. SMITH 

When appropriate data from regional reference locations are available, tolerance- 
interval bounds can be computed to provide criteria or limits distinguishing reference from 
noweference conditions. If the limits are to be to applied to locations and times beyond 
the orininal data, the data should include temporal and spatial variation and the tolerance 
inrervai calculations should utilize a random crossed or nested ANOVA statistical design. 
n o  com~utational methods for such designs are discussed and evaluated with simulations. -
Both methods are shown to perform well, and the adverse effect of usinp. an imvroper deslgn - . . -
model is demonstrated. Three real-wodd applications are shown, where tolerance intervals 
are used to (1) establish a reference threshold for a benthic communih, ~ollution index. .,(2),,. 
set criteria for chemicals in sediments, and (3) establish background thresholds for survival 
rates in sediment bioassay tests. Some practical considerations in the use of the tolerance 
intervals are discussed. 

Key Words. Bioassay; Bootsuap; Calibration; Pollution index; Sediment criteria; Simu- 
lation. 

1. INTRODUCTION 

Environmental monitoring and reguiatory activities focused on determining the pres- 
ence of impacts or recovery often involve comparisons with reference or background con- 
ditions. Reference conditions are usually characterized by indicators and other relevant 
variables measured at regional locations assumed to represent reference conditions (Bloom 
1980: Hughes, Whittier, Rohm, and Larson 1990; Hughes 1995). The resulting data can 
be used to establish criteria or distinguishing reference from nomeference conditions. It is 
important to consider and intelligently choose among the analytical options available for 
establishing these limits. 

In an effort to determine impacts, it is a common practice to use ANOVA statistics 
to compare indicator means for potentially impacted locations with the indicator mean for 
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the reference locations. Given natural and random variability, the mean indicator values at 
different locations within regional reference areas will differ from the overall reference mean 
(Hudberi 1984; Wiens and Parker 1995), so deviation from the overall reference mean is not 
sufficient to distinguish reference from nonreference. Thus, traditional ANOVA methods 
will often be inappropriate when comparing potentially impacted locations with reference. 

The reference data will cover a range of indicator values, and some type of comparison 
with this range is more appropriate since it incorporates the expecteddifferences in indicator 
values among the reference locations. Usingthe actual upper or lower limit of the data range 
as a standard of comparison for reference conditions would be risky due to uncertainty 
associated with sampling error. Also, a single unusual value in the sample data could 
greatly affect the value of the limit used for comparison. A limit incorporating sampling 
error and corresponding to a relevant quantile toward a tail of the reference data distribution 
would be more useful (Splitstone 1991; Kilgour and Somers 1998). Such a limit would be 
a tolerance-interval bound (Hahn and Meeker 1991; Vardeman 1992). Applications using 
tolerance intervals for comparison with reference conditions have involved monitoring of 
contaminants in groundwater (Gibbons 1994), soil, vegetation, and snow (Allen and Jones 
1998) and benthic infaunalcommunity parameters (Smith 1995,1998; Smith andBernstein 
1996). 

A tolerance-interval bound is simply the upper or lower confidence-interval bound of a 
quantile of the underlying data distribution. When increasing indicator values are positively 
correlated with impact, one could choose a quantile (say .90) toward the upper end of the 
distribution to define a limit. The tolerance-interval bound would then be the upper bound 
of a 1-a confidence interval for the .90th quantile. Here a is the selected probability or 
riskthat the defined bound (computedfrorn the sample data) does not cover the actual .90th 
quantile of the underlying data distribution. 

Standard parametric and nonparametric tolerance-interval computations (Woodward 
andFrawley 1980; Gilben 1987; Hahn and Meeker 1991; Portugal 1992; Vangel 1994; Allen 
and Jones 1998) are appropriate when the sample data values are independent. Relatively 
independent observations would be expected in cases where single observations are taken 
from multiple randomly selected locations during a single time period. Alternately, the 
sample could involve single observations at randomly chosen times at a single location. 

When using tolerance intervals to define limits to reference conditions and these limits 
will be compared to future measurements, the data sample should contain both temporal and 
spatial random variability. This requires a sample including multiple times and locations. 
If the data sample involves only a single sampling event cwering locations in space, only 
spatial variability will be included in the data distribution. For future obse~ations, this 
increases the risk that natural changes over time will be confused with impact. 

When the data include both spatial and temporal random variability, the data values 
within the different levels of time or location will tend to be positively correlated. In this 
case, the standard tolerance-interval computations assuming data independence will be in- 
appropriate. Computational methods for computing tolerance intervals from datacontaining 
both spatial and temporal variability are not presently well developed, and I am unaware 



of any publications where such methodology has been applied to real data. In this article, 
I describe two computational methods for dealing with data containing both temporal and 
spatial random variability. The first method is that of Bagui, Bhaumik, and Pames (1996). 
The second method, which involves a parametric bootstrap approach (described in reports 
by Smith and Riege 1998; Hunt et al. 1998). is new. 

The objectives of this amcle are to 

(1) describe the tolerance-internal calculations, 
(2) use simulations to evaluate the computational methods, 
(3) 	demonstrate the penalty paid when standard tolerance intervals are inappropriately 

used, 
(4) provide examples of real-world applications using the methodology, and 
(5) 	make some practical suggestions for applying tolerance intervals with these meth- 

ods. 

2. STATISTICAL MODEL 

In this section, the statistical model for the tolerance interval calculations is discussed. 
When the data contain both spatial and temporal variability, a useful statistical model will 
often be a two-way crossed ANOVA model with time and space as random factors (Davis 
1994). The model is completely random since, in the target applications, we are interested 
in generalizing our results to other locations and times not in the sample from which the 
bounds are computed (Jackson and Brashers 1994). Beckman and Tietjen (1989) &rive 
two-sided tolerance intervals for a random balanced crossed ANOVA design. However, 
one-sided limits that can be applied to unbalanced data sets will be most useful for the 
intended applications. One-sided intervals are appropriate for parameters where impact is 
associated with either an increase or decrease in parameter values (as is most often the 
case). Also, unbalanced data are common with environmental data sets. The Bagui et al. 
(1996) and the parametric bootstrap methods are the focus of this article because they are 
suitable for computing one-sided tolerance-interval bounds with unbalanced data. 

In cases where completely different locations are sampled at each sampling time, a 
random nested model with locations nested within times will be appropriate. However, 
the simulation results in this article show that the tolerance-interval bounds for the nested 
model can be computed as a htghly unbalanced crossed design, so the nested design is not 
emphasized. 

Thecrossed statistical model is now more formally described. For simplicity, the statis- 
tical model is described in terms of rows, columns, and cells of a table describing the design. 
The different levels of factor 1 are represented by rows, levels of factor 2 are represented by 
columns, and combinations of the factor levels are represented by the cells. An observation 
with a two-way crossed random model can be decomposed as 



where yijk is the kth observation in the cell defined by the ith row and the jth column, p 
is the genernl mean, bi is the effect of the observation being in row i , pj is the effect of the 
observation being in column j ,  yij is the interaction effect of row i with column j ,  and eijk 
is the error, or the deviation of the observation from its expectation (the sum of the other 
terms in the model). The eijk, 6i,P j , and y ~ ,are assumed to be independent random factors 
following N(0, uz),N(0, ui),N(0, u;),and N(0, u:), respectively. 

It should be emphasized that the model and associated computations discussed in the 
next section apply to the situation where single future observations are to be compared with 
the computed tolerance-interval bounds. The statistical model would need to be modified 
to apply to comparison with averaged values. Using a model for single observations is the 
most flexible because it can apply to all future observations regardless of sample size at any 
one location and time. 

3. COMPUTATION OF THE TOLERANCE INTERVAL BOUNDS 

The general formula for a parametric one-sided upper tolerance-interval bound is 

and for a one-sided lower tolerance-interval bound 

where 3 is the estimate of the overall mean and s is an estimated standard deviation. The t 
is computed as the mean of all data values in the sample, and the computation of s varies, 
depending on the method being used. The methods described in the following sections differ 
only in the manner in which the kp,,  and s values are estimated. 

The kp,, is computed so that the resulting b,,, estimates will fail to cover the underlying 
pth population quantile a proportion of the time, thus 

for an upper bound and 

for a lower bound, where qp is the underlying pth quantile of the population distribution 
(usually unknown). Thus, a is the rate of noncoverage of qp by the bp,, estimates. The 
tolernnce interval bound is equivalent to a one-sided upper or lower confidence interval 
bound on q, (Hahn and Meeker 1991). 

When the sample consists of independent measurements and the dataare from a normal 
distribution, the standard method can apply. In Equations (3.1) and (3.2), s is the computed 
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standard deviation of the sample data values and 

where tl-,,,-l,x is the 1 -a quantile of the noncentral t-distribution with n-1degrees 
offreedom and a noncentrality parameter of A. Here n is the sample size and X = ~,n'1~, 
with zp being the absolute value of the pth quantile of the standard normal distribution. 

3.2 THEBAGUIET AL. (1996) COMPUTATIONALMETHOD 

This method can be applied to any random model, but the computations specific to 
the random crossed model are shown here. In Equations (3.1) and (3.2). s is the estimated 
standard deviation of the mean, computed as 

where 5; is the estimated variance component for factor 1 (rows), 5; is the estimated 
variance component for factor 2 (columns),8;is the estimated variance component for the 
interaction between factors 1 and 2, and 5; is the estimated error variance. In (3.3), 

n l = C n : , ,  n 2 = z n 2 , ,  n s = ~ p n $ ,and n = C x n i j ,  
i=1 j = 1  i=1 j = 1  i=l j-1 

where nu is the number of observations in the row i,column j cell, ni.is the total number 
of observations in row i, n.j is the total number of observations in column j ,  and r and c 

are the numbers of rows and columns, respectively. 
The kp,, is computed as 

which is the 1-a quantile of the noncentral t-distribution with @ degrees of freedom and 
a noncentrality parameter of A. Here. clf is the approximate degrees of freedom associated 
with the estimation of s: (Satterthwaite 1946; Bagui et al. 1996), which is 

M S D  is the ANOVA mean square for the rows, M S B is the ANOVA mean square for the 
columns, and MSG is the ANOVA interaction mean square. The d f ~ s ~ ,dfMsB, dfMsG 
are the degrees of freedom associated with the estimation of the respective mean squares 
and 

h = 
sg 

M S D  + M S B  + MSG ' 

The noncentrality parameter X is estimated as 

where zp is the absolute value of pth quantile of the standard normal distribution. 



With this method, 8 in Equations (3.1) and (3.2) is the estimated standard deviation of 
the data values, computed as 

The value for kp,, is computed with the following procedure: 

(1) The initial values for p, ui, u$, u:, and 02 are set equal to Z,662, 6$, 6:, and 62, 
respectively. 

(2) We assume that the values for p, 062, u;, u:, and u: are known exactly, and the pth 
quantile (for an upper bound) of the underlying data distribution is computed as 
qP = p + zp(u;+ ui+ u?,+ u2)1/2,where zpis thepth quantile of the standard 
normal distribution. 

(3) Nz sets of simulated data are created using p,u;, ug, u;, and 02. The simulation 
method is detailed in the Appendix. 

(4) 	For each of the Nz data sets, Z,, 6;,, 6$,, 6?,,,and 62<(i = 1to N2)are computed. 
From the computed variance components, si is computed using Equation (3.7). 

(5) A chosen ic,,, value is used along with all Z; and si to compute a set of Nz bounds 
(b,,,$) using Equation (3.1). 

(6) For the bounds computed in step 5, the rate of noncoverage of qp by all the bounds in 
theset iscomputed as uo = m / N o ,where n is the number of times that b,,,,, < q, 

(for an upper bound). 
(7) Steps 5 and 6 are repeated for a series of kp,, values. The kp,, value producing the 

minimal value of la2 - a/is the final kp,, value used in Equation (3.1). 

Steps 5-7 are similar to the algorithm used by Davies and Gather (1993) to compute a 
constant (similar to k,,,) for a robust outlier-detection technique that is, in principle, very 
similar to a tolerance interval. In step 7, a successive interpolation procedure was used to 
zeroin on a k,,,, thatproduces a smallvalue for Jruz-a/.This procedure involved repeatedly 
bracketing the minimum la2 - a1 for successive series of potential kp,avalues. For each 
successive series, the range of kp,, values decreased and the interval between each kp,, 
value in the series was decreased by one half. The process was terminated when la2 - a/ 
reached a tolerance value (.5/Nz)or a maximum number of iterations were exceeded (99). 

For the present application, the Henderson method I (Searle, Casella, and McCulloch 
1992) was used to compute the variance component estimates because it is appropriate 
for unbalanced data, the mean squares used in Equation (3.5) are available from the 
computations, and the variance components can be computed rapidly (as required for 
simulation nnd calibration). This method can produce negative variance components, which 
are treated as zeros in the computations. 
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4. 	EVALUATION OF THE METHODS WITH SIMULATIONS 

Simulations are used to evaluate the performance of the methods described above. For 
the tolerance-interval bounds computed from simulated data, the noncoverages of known 
population percentiles are compared with the nominal a levels. If the methods are working 
well, the noncoverage should approximate the nominal a level. The following steps describe 
the simulation procedure: 

(1) For a simulation experiment, values are chosen for p, a:, a;, a?,, and 02, a ,  and p. 
The desired sampling design is defined by specifying thenumbers of rows, columns, 
and cell replicates in the model. 

(2) 	Since the values for p,a:, a;, a?,, and a,"are known exactly, the actualpth quantile 
(for an upper bound) of the underlying data distribution can be computed as 
qp = p + zp(a;+ v$ +a; fai)1/2,where i,is the pth quantile of the standard 
normal distribution. 

(3) 	No sets of simulated data are created using chosen values for p,a:, a;, a:, and 0:. 
The simulation method is detailed in the Appendix. 

(4) Foreachof the NOdatasets, 4,&id, (i 1to No)arecomputedand6&, 6:". = 
used to compute a b,,,,, value. This step simply involves computing the tolerance- 
interval bounds (bp , , , i ) ,  using the method being evaluated, to each of the No data 
sets. 

(5) Therate of n~ncoverageofq~by 	 m/No,wherethe bp,,,i values is computedas a0 = 
m is the number of times that bps,,< 2 qp over all No simulated data sets. Since the 
rate of noncoverage of q, is supposed to equal a ,  a. should be approximately equal 
to a if the method of computing bp,, is accurate and No is a sufficiently large value. 

5. 	CALIBRATION 

Both the computational and bootstrap tolerance-interval methods described above 
are approximations. With the Bagui et al. (1996) computational method, the variance 
components used in (3.3) and (3.6) are estimates, so the coverage of the pth quantile 
by b,,, is not assured to be 1- a. In addition, the formula for degrees of freedom in 
(3.5) is only approximate, and with an unbalanced design, the mean squares used in (3.5) 
are not independent as assumed (Milliken and Johnson 1984). The bootstrap method also 
treats variance component estimates as known values, and the bounds should reflect the 
corresponding uncertainty. 

Using the evaluation technique described in Section 4, preliminary simulation 
experiments indicated that the computational method almost always produced noncoverage 
of the pth quantile at a rate less than a and the parametric bootstrap tended to produce 
noncoverage at a rate greater than a. To provide b,,, values where the noncoverage of 
the bounds is closer too ,  a bootstrap calibration method using the approach of Efron and 
Tibshirani (1993, chap. 18) was developed as follows: 



Figure 1. An Ezample of the Calibmtion Interpolation Procedure Where the Nominal a = .05. 
Here the final bound is computed with ar' = ,082to obtain the desired nominal ar of .05 for the 
computational method. 

(1) For each of a series of chosen ai values, the procedure of Section 4 is applied, with 
a = mi, No = N I ,  and using the computed 5,&:, &$, 5;.and 5; values as the 
initial mean and variance components. The procedure will produce an ao, (= 00) 

value for each a,. 
(2 )  The a, value corresponding to aoi = a is chosen as the new nominal a, which 

will be called a ' .  With the computational method, a' is computed by interpolation 
(Figure 1).With the bootstrap method, the a i  value corresponding to the a o i  closest 
to a is used a5 a'. 

(3) 	With the computational method, the variance components and the mean in step 1 
are used to compute kp,*,, SS, and the final bound b,,,, . With the bootstrap method, 
a final ic,,,, is first computed as the mean of the k,,,r,j (j= 1to AT1) values 
generated in the calibration procedure. Then b,,,, is computed from s (using the 
variance components in step l), 2,and the final kp,,,. 

With the computational method, it is knownthat the noncoverage of the bounds is almost 
always less than a before calibration, therefore all ai >_ cu only calibrate upward. In the 
analyses shown in the Results section, a, = a ,  a + d ,  a + 2d,. . . , a  + 5d. For a < .031, 
d = ,005; for a > .19, d = .02; otherwise, d = .01. This provided a greater range of ai 
values for larger a .  

The rates of noncoverage for the uncalibrated bootstrap method are not as predictable, 
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Design A - Small. Unbalanced Design B -Balanced w. Replieatton 

Levels of B 	 &el. of p 
1 2	 4 63 5 

1 
Levels of 6 	2 

3 
4 

Design C - Balanced wlout replication 	 Design D - Unbalanced 

Design E -Very unbalanced 
Design F - Nested 

Levclr of 0 

Figure 2. The Numbers of Cell Replicates for the Designs Used to Evaluate the Methods. 

so the oiinclude values both above and below a. The potential values used were 

a:< = ,001, ,0025, ,005, ,0075, .01, .02, .03,. . . ,.lo, .15, .20,. . .,.50. 

The maximum a+used in this series was 30. 

6. DESIGNS FOR METHODS EVALUATION 

To demonstrate the performance of the methods over a range of sampling designs, the 
tolerance-interval methods are evaluated (see Section 4) using the multiple sampling designs 
shown in Figure 2. Design A is evaluated over a range of variance components, p, and a 
values. The other designs assess the effect of design and for the most part are evaluated for 
a single set of variance components, p, and a:values. The logic for the choice of designs is 
discussed in the Results section. 

7. RESULTS 

The simulation results evaluating the methods (Section 4) are in Tables 1 4 .  The designs 
used are desclibed in Figure 2. The tables show a : ~values, which should approach the 



nominal a values used in the simulation. Where variance components are indicated, four 
01112 values are shown. These are the actual four variance components used for the 
simulations. The order of variance components is C T ~ ,a$,cr$ and 02,  respectively. For 
example, 1101 indicates that uj = 1 , ~ ;= 1,gz = 0, and a: = 1. 

For the computational method, No = 3,000 (number of simulations, Section 4) and 
Nl = 1,000 (number of calibration simulations, Section 5). For the bootstrap method, 
No = 2,000, NI = 300, and Nz = 300 (number of simulations to compute each ic,,,, 
Section 3.3). To speed up the simulations, the values set for NI and Nz were the minimum 
numbers that produced a reasonably stable result. In practice, higher values for N,and N2 
can he used since the process will not be repeated No times, as was the case when evaluating 
methods. 

In the model A scenario, the numbers of rows and columns, and therefore the degrees of 
freedom, are low. Near worst-case pe~ormance from the methods would be expected in this 
kind of situation. Table 1 shows that the bootstrap and calibrated computational methods 

Table 1. Simulation a0 Values for Design A Over a Range of Variance Component Scenarios. In all 
simulations, a = .05 and p = .90.The rows are ordered by the computationai with calibrath 
results. 

Variance Computational Computationai 
components Bwtslrap with calibration without calibration Standard 

0001 0.022 0.004 0.001 0.051 
0011 0.030 0.012 0.002 0.098 
0010 0.021 0.026 0.011 0.205 
0111 0.060 0.034 0.013 0.214 
1112 0.053 0.035 0.014 0.209 
1011 0.048 0.036 0.01 5 0.206 
1222 0.055 0.036 0.013 0.225 
1122 0.055 0.036 0.014 0.192 
0101 0.085 0.041 0.017 0.230 
1001 0.089 0.041 0.016 0.235 
2112 0.067 0.043 0.019 0.228 
1212 0.075 0.045 0.018 0.237 
1121 0.062 0.046 0.021 0.237 
1111 0.060 0.047 0.019 0.256 
0100 0.040 0.047 0.047 0.465 
1000 0.036 0.048 0.048 0.464 
2122 0.058 0.049 0.018 0.242 
1100 0.031 0.050 0.039 0.389 
2121 0.048 0.053 0.026 0.265 
1101 0.066 0.054 0.023 0.270 

2212 0.055 0.056 0.021 0.267 

2221 0.050 0.058 0.031 0.274 

1110 0.055 0.061 0.034 0.330 

0110 0.067 0.065 0.033 0.316 

2111 0.077 0.066 0.032 0.283 

1211 0.062 0.066 0.035 0.278 

2211 0.060 0.070 0.035 0.292 


Mean 0.055 0.046 0.023 0.259 



Table 2. Simulation ao Values tor Design A Over a Range of Nominal a Values. In all simulations, 
p = .90and the variance components are 1 1  11. 

Computational Computational 
Nominaicr Bootstrap with Calibration without Calibration Standard 

Table 3. 	Simulation 00 Values for Design A Over a Range of p Values. In a11 simulations, a= .05and 
the variance components are 1 1  11. 

Computational Computationai 
P Bootstrap with Caiibration without Calibration Standard 

0.60 0.056 0.059 	 0.034 0.240 

0.70 0.061 0.061 	 0.033 0.250 

0.80 0.063 0.055 	 0.027 0.258 

0.90 0.060 0.047 	 0.019 0.256 

0.95 0.055 0.041 	 0.016 0.247 

0.99 0.066 0.035 0.017 0.243 


Mean 0.060 0.050 0.024 0.249 

Table 4. Simulation ao Values for Designs E F .  In ail simulations, p = .90and a = .05. 

Vaflance Computational Computational 
Design components Bootstrap with Calibration without calibration Standard 

B 1111 0.046 0.051 0.026 0.337 
C 1110 0.054 0.053 0.030 0.224 

work very well on the average, with mean a 0  values very near the desired value of .05. The 
generally low cuo values for the uncalibrated computntional method demonstrate the value of 
the calibration pro_c_edure. The genelaally very high a 0  values for the standard method show 
the risk of applycg the improper~tatistical model when computing tolerance intervals. 
When the variance components equal 0001, the standard method performs the best. This 
result is not surprising since, when only the error vanance component is greater than zero, 
the observations will be independent, and the standard method is appropriate. 

Results in Table 2 with design A show both the bootstrap and calibrated computational 
methods again performing well for a series of nominal 0 values. Table 3 shows a similar 
result for a series of p values. Table 4 summarizes the results for some larger models. 
Again, both the bootstrap and calibrated computational methods work very well. Design C 
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represents a common situation, where at most a single replicate is taken at each location and 
time. In this case, the error variance component cannot be estimated and will equal zero. 
Results for designs E and F show that the degree of unbalance does not adversely affect the 
methods. In fact, design E is essentially nested since each level of 6 contains unique levels 
of 0.This suggests that it is not necessary to formulate a separate computational model for 
the nested design. 

8. APPLICATIONS 

Three applications are presented below. In the cases shown, the null hypothesis of 
normality was accepted (p > .25) when ashapiro-Wilk statistic was applied to the pertinent 
data (Shapiro and Wilk 1965), so a parametric approach seemed justified. The sampling 
designs included observations taken over time and space, so the two-way random crossed 
model was appropriate. All computations were performed using the parametric bootstrap 
method. 

8.1 BENTHIC RESPONSE INDEX 

A benthic response index (BIU) has recently been developed as an indicator of pollution in 
the Southern California Bight (Smith et al., 2001). Index development was based on a large 
calibration data set of benthic infaunal observations covering a wide area over several years 
between 1973 and 1994. Using ordinationanalysis of these data (Smith and Bernstein 1985; 
Bernstein and Smith 1986), 519 taxonomic categories (mostly species) were given pollution 
tolerance scores. The index value for an observation is computed as the abundance weighted 
average pollution tolerance score for all taxonomic categories found in that observation. 
Higher index values indicate increasing pollution effects. Once the index was developed, 
threshold index values were established to give ecological meaning to different levels of 
the index. The first threshold of interest was that between reference and minimally affected 
conditions. To define this threshold, 147 observations from the calibration data set were 
chosen as reflecting reference conditions. The resulting design involved 4 years by 117 
stations. Each cell of the design contnined either zero or one replicate. The distribution of 
index values is shown in Figure 3. The reference threshold was set at an index value of 25, 
which was tolerance-interval bound forp = .90 and u = .05. 

Once the index reference threshold of 25 was established, it was of interest to examine 
the index values around Southern California sewage outfalls to see the possible spatial 
extent and severity of outfall effects. Figure 4 shows a contour map of index values at one 
outfall. The effect at the terminus of the outfall appears to be minimal and spatially limited. 
Slightly elevated index values also appear in shallow water. Possible sources of impact in 
the shallow area are the nearby Santa Ana ~ i v e r  and Newport Bay. 

This project involved using chemical measurements from San Francisco Bay sediments 
to characterize background or ambient conditions (Smith and Riege 1998). This information 



Distributionof Reference lndex Values 

-1 1 3 5 7 9 11 	 14 17 20 23 28 29 32 
Index Value 

Figure 3. DIlitebution of BRI Inder Values in Reference A m s  of the Southern California Bight. 
Thep = .90,a = .05 upper tolemnce-interval bo~ndis 25, which was chosen as the upper threshold 
for reference conditrons. 

Figure 4. Contour Mop of BRI Vahes in Summer 1994 in the Vicinity of the County Sanitation 
Dbtricts of Orange County Outfall ( W m  Smith 1998). The numbers on the map are BRI valves 
at the respective locations. Contour lines for 25 and 30 ore shorn. 



would be useful in establishing future sediment criteria for protecting the Bay biological 
resources. A data set with sediment chemical measurements from 36 locations and 13 
snmpling times was used to define the reference distribution. Each cell of the design 
contained 0-3 replicates. Upper tolerance-interval bounds for a series of p values were 
estimated. 

Interpreting the levels of chemicals in sediments is complicated by the fact that the 
concentrations of most chemicals increase as the sediment particle size decreases. Thus, to 
be useful, the tolerance-interval bounds need to vary with the sediment size. Metals showed 
a monotonic increase in concentrations with increasingly finer sediments (% fines). For 
some metals, the relationship was slightly nonlinear and there was a tendency for more 
variability in the concentrations of finer sediments. A regression model that accommodates 
such relationships (Chatte j ee  and Price 1977) is 

log(yi + c) = log(a) +psi + log(&$), 

where y, is the ith chemical measurement, z, is the % fines in the sediments associated 
with measurement i, log(a) is the intercept, /3 is the slope, log(&$) is the residual, and c is a. 
constant added to all yi to prevent indeterminate values when yi = 0, or to provide a better 
fitting model. Standard least squares linear regression was used to compute log(a) and 0. 
The tolerance-interval bounds were computed from the residuals, which were adjusted for 
the effect of sediment size by thepxi term. The resulting tolerance-interval bound represents 
a positive distance off the regression line predicting log(yi +c). The tolerance-interval upper 
bounds in the original concentration units were computed as 

where U,is the upper bound for sediment i, u is the tolerance interval bound computed 
from the residuals, and e is the base of the natural logarithm. This model ignores the 
uncertainties involved in estimating log(a) and 0, which are small compared with the 
variability associated with the residuals. 

Figure5 shows the results for nickel. This application contrasts with the alternate approach 
of defining limits based solely on chemical concentrations where environmental harm is 
known to appear. Most of the values for nickel were above a level associated with toxicity in 
test organisms (SFEI 1997). It is very unlikely that a location in the bay can be cleaned up to a 
completely nontoxic level for a very long period of time since mixing and sediment transport 
will tend to restore background levels even after the metal is removed from an impacted 
location. Thus, the tolerance-interval bounds could be used to indicate what sediment criteria 
limits could be practically enforced. 

This study was a patt of the California Bay Protection and Toxic Cleanup Program 
(BPTCP). The initial focus of the program has been the identification of toxic hot spots in 
fine sediments of the Bay (Hunt et al. 1998; Hunt, unpublished manuscript). Hot spots were 
defined as localized areas where elevated concentrations of toxic pollutants are found in 
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Figure 5. Plot of Nickel Values Versus Pement Fines of the Sediment ( h m  Smith and Riege 
1998). The solid line is the regression line, and the dotted lines are the upper tolerance-internal 
bovnde for p = .70,.75,. ..,.95 (labeled on the nght), with a = .05. Concentration is in mg/kg. 
Pement fines is pement silt plus dcy. 

association with adverse biological impacts. Bioassay tests with marine organisms were 
used to measure biological impacts. However, bioassay tests from sediments in even the 
cleaner parts of the Bay will usually show some toxicity. A screening tool was needed 
to distinguish between background toxicity levels and more extreme toxicity. Reference 
sediment data were obtained from five locations during three survey periods, with three 
replicates per location-survey. Four cells were empty, giving a total of 33 observations. 
Several bioassay tests were applied to each sediment sample. Tolerance-interval bounds 
were computed from the bioassay results to distinguish between background toxicity and 
more seriously toxic potential hot spots. 

The data distribution for the Ampelisca nbdita bioassay is shown in Figure 6. Here the 
data variable is a measure of survival, so adverse impacts are associated with lower survival 
values, and lower tolerance-interval bounds for p c: .50 are of interest. The computed 
bounds forp = .01, .05., .lo, .16, and .20were computed as 54.7, 65.3, 70.9, 75.1, and 

~ ~ ~ 

~-- 77.5, respectively (a= ,051. The choice of the value of p to use when screening sediments 
for toxicity is a regulatory decision that has to balance environmental protection, cost and 
feasibility of cleanup, and politics. 

9. DISCUSSION AND CONCLUSIONS 

The simulation results show that both the bootstrap and computational (witticalibration) 
tolerance-interval methods work very well for the two-way crossed random design. They 
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Figeve 6. Distribution of Bioassay Results for the Amphipod Arnpelisca abdita (After Hunt et  al. 
19S8). 

also show that using a standard tolerance interval when the crossed model is appropriate 
can lead to very inflated rates of a. 

Often, the assumption of normality of the underlying distribution will be untenable and 
the parametric computations will produce questionable bounds. If the observations are 
independent, the nonparameaic analogs of the standard method can be used. When the 
crossed or nested model is appropriate, the following options can he considered: 

(1) Transform the data to better approximate normality (Box and Cox 1964) before 
computing the tolerance intervals. However, for some data, no meaningful 
transformation will produce sufficient normality. Also, if the data are transformed, 
the back-transformed bounds should be examined closely. In practice, extreme 
bounds that may not be useful can sometimes result from this approach. 

(2) Presently. there is no nonparametric analog to the tolerance intervals with a c~ossed 
or nested random design. One could go ahead and use nonparametric methods for 
independent observations. To compensate for the fact that the observations are not 
actually independent. a more extreme p value can be used in place ofthe planned p 
value. The relative amount of adjustment needed will depend on the distribution of 
variance components. For example, in Table 1, it is evident that, as the greater the 
proportion of variance found in the error and interaction components, the closer the 
coverage of the bounds is to the nominal a,meaning that less adjustment would be 
needed. 

(3) 	At times, nonnormality is caused by one or a few outlier observations. From a 
regulatory perspective, one would not want to set limits overly influenced by n 
small number of outliers, which may be due to unknown errors or conditions. Using 
the outliers in the computations could lead to extreme tolerance-interval limits that 
expose the environment to unreasonable risk. Thus, removal of outliers can produce 
more environmentally conservative limits and also allow for use of parametric 
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tolerance intervals if the outlier removal makes the assumption of normality more 
tenable. 

(4) The parametric bootstrap computations could be modified to be appropriate for 
different (uonnormal) distributions. 

Another assumption of the methods is that the levels of the factors and the replicates are 
randomly selected. The analyst should carefully consider the possible effects of nonrandom 
sampling on the resulting bounds. If the data are unrepresentative or some other imbalance 
exists in the distribution in time or space, then balance may need to be restored by removing 
or obtaining more data. 

Frequently, a systematic form of sampling is used. If the reference locations or times are 
in random order (Gilbert 1987) or in quasi-random order (Bamett 1991). the systematic 
data can be used as if it were random without biasing the variance estimates. The degree 
to which the data meet these criteria will mostly depend on the amount of antocol~elation 
(CliffandOrd 1981) among the locations and times. Autocorrelation will prevent the criteria 
frombeing met. Often, the autocorrelation will decrease as the temporal or spatial distance 
between the factor levels increases. 

There are some indicators that both increase and decrease in response to pollution. For 
example, measures of species diversity initially increase in value with moderate increases 
in organic enrichment and then decrease as the enrichment increases further (Pearson and 
Rosenherg 1978). In such cases, a two-sided tolerance interval would be useful. Rather than 
use separate computations for two-sided intervals, it is simpler to compute both lower (with 
p < .50) and upper (with p > .50) one-sided bounds. These bounds will be similar to the 
hounds for a two-sided interval (Hahn and Meeker 1991). 

It should be noted that tolerance intervals may not always be the most powerful approach 
to impact assessment. When sufficient before- and after-impact data are available at 
reference and impact locations, repeated measures ANOVA models can potentially provide 
much more powerful tests (Green 1979,1993; Bemstein and Zaliuski 1983; Stewart-Oaten, 
Murdoch, and Parker 1986; Faith, Humphrey, and Dostine 1991; Underwood 1991,1993, 
1994). However, when an impact is detected with a more powerful approach, the tolerance- 
interval bounds for reference (if available) can help put the impact in perspective. For 
example, if the indicator value at an impacted location is still inside or very near the 
tolerance-interval hound, then the impact could be judged as minimal. Indicator values 
further.- outside the reference hound would be associated with more serious impacts. 
-. 
Time is a random componeFiin the proposed tolerance-interval statistical model. 

Interestingly, some of these repeated measure ANOVA models mentioned in the previous 
paragraph consider time as a fixed factor (Green 1993; Underwood 1993, 1994). while 
others consider time a random factor (Bemstein and Zalinski 1983; Stewart-Oaten et al. 
1986). VanLeenwen, Murray, and Urquhart (1996) include both a fixed temporal trend 
component and a random time (year) component. The tolerance-interval statistical model 
wuld be modified to include time as a fixed factor. However, when time is fixed, the 3 in 
Equations (3.1)and (3.2) will need to be the mean for the time period of the observation 
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being compared with the tolerance-interval bound. To estimate this mean, a sample of 
spatial locations for the time period of each future observation would be required. Thus, the 
tolerance-interval model with random time is more general in a sense that it can be applied 
to observations whether or not there is any replication of locations during the time period 
of the observation. 

As with tolerance intervals, prediction intervals (Whitmore 1986; Hahnand Meeker 1991; 
Vardernan 1992) arealso useful for statistically defining boundaries enclosing proportions of 
the data distribution from which arandom sample is taken. Prediction intervals define limits 
that will apply to a specific chosen number of future observations and arevery useful where a 
monitoring program is well defined with specific planned comparisons to determine impact 
(Davis and McNichols 1987; Boswell, O'Connor, and Patil1994; Gibbons 1994,1996). My 
focus has been on applications where a limit is set and the number of future comparisons 
to that limit is unknown. For this situation, tolerance intervals are more appropriate since 
the tolerance-interval limits defined apply to all future observations regardless of the actual 
number of observations this might involve. 

The program used to compute tolerance intervals and evaluate the methods is available 
upon request from the author. 
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APPENDIX: DATA SIMULATION 

This appendix briefly describes how simulated data are generated from a set of variance 
components and a mean. First, a multivariate random normal generator (Johnson 1987) is 
used to produce cell means in the sampling design. For a simulation, let M be an r x c 
matrix of cell means for the crossed design, where T =number of rows and c = number of 
columns in the design. If mi is the ith column of M, then 

where K is an T x 1column vector of N(0, l )  standard random normal deviates, X is an 
r x 1column vector of N(p, a:) random normal deviates, and A is an T x r matrix such 
that AA' = C. Here C is an T x T variance-covariance matrix with a: +a: in the diagonal 



and a$ in the off-diagonal. Matrix A is computed by Choleski factorization of C. Once the 
cell means in M are computed, the replicate values in each cell of the design are simulated. 
A data value is simulated as an N(m,,, uz)random normal deviate, where m, is the cell 
mean of the ith row and the jth column of M. The number of replicates simulated in each 
cell equals the number of replicates in the sampling design. 




