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In the United States, each state is required to list water resources that are declared to be impaired 
under guidelines set by the Clean Water Act. Measurements are typically collected on a number of 
chemical constituents and compared with a standard. If there are too many measurements exceeding 
the standard, then the site is declared impaired. The approach is non-statistical but similar to a 
Binomial test. The Binomial approach would convert the measurements to binaw data then test if the . . 
proponion exceeding the standard is excessive. Both methods convert measurements to blnary 
values hence exclude potentially important information in the data. We present a statistical approach 
using a Bayesian model that uses the raw data instead of the binary transformed data. The population 
distribution of a family of location-scale parameter models is studied under the model. Posterior 
distributions from the Bayesian analysis are used in the decision-making process and error 
probabilities for the Bayesian and the Binomial approaches are compared for a normal population. 

Keywords: hypotheses Iesting, location-scale parameter model, mean squared errors, standards, 
reference priors, posterior distribution, Type I error probability, Type I1 error probability 
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1. Introduction 

To assess violations of water quality standards, Section 303 (d) of the Clean Water Act 
mandates that states undertake an assessment of, and then report on, the condition of 
specific segments (a lake, bay or river) of water within the state. For river and stream 
systems, reports are based on information collected at a large number of monitoring 
locations, each associated with a different site. Reports describe the condition of stream 
segments with each segment typically associated with a single sampling station or site. 
The monitoring typically occurs on a quarterly (or more frequent) basis and the assessment 
is based on two or more years of data. Each sample from a water segment is assumed to 
represent a background population of water quality conditions. The assessment challenge 
is to intemret a limited amount of samole data to determine whether stream conditions are 
violating standards more than 10% of the time at each site, recognizing that the sample 
measurements are taken from a population of stream conditions affected by variability in 

~ ~ 

human activity and natural (or background) conditions. 
For the evaluation of stream condition, Virginia's Department of Environmental Quality 
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(DEQ) has proposed that data interpretation is best addressed as a classical problem 
of statistical inference and has employed a well recognized statistical approach as p m  
of the data interpretation (see Commonwealth of Virginia, 1997, Appendix D or 
http://www.deq.state.va.us/water/305b.html) Specifically, the DEQ has chosen the 
"~inomial" approach as the appropriate tool for assessment. The approach is based on 
estimatine-.D. the true orobabilitv of the chemical measurement exceedine the standard. . u 

The Binomial distribution is used to conduct a statistical test of whether thisp is more than 
10% or not. A site is declared impaired if there is sufficient evidence to declarep is bigger 
than lo%, based on the sample proportion. 

On the other hand, the U.S. Environmental Protection Agency (EPA) recommends a 
simpler method we refer to as the "raw score" analysis. If 10% or more of the sample 
measurements exceed the standard, the site would be declared impaired. A statistical 
representation of the raw score approach can be made with reference to Fig. 1. Suppose 
that a standard of 2.5 units is given for certain water quality variable. When the site is not 
impaired, a possible distribution of the water quality variable may be drawn as shown with . . 
the90th percentile of the population distribution less than or equal to 2.5. If this is the case, 
the water quality standard requires that aconcentration of 2.5 should not be exceeded more 
than 10% of the time. On the other hand, if a site is in violation of the standard there will br 
somenumber of samples that will exceed the 2.5 standard and the true 90th percentile of 
the distribution from the data will exceed this standard. Note that this conceptual model is 
reasonable for measurements that fluctuate naturally (e.g., dissolved oxygen). For other 
quantities (e.g., synthetic chemicals such as PCB's) more stringent views are required. 

Both of the aforementioned methods use truncated data information, namely binary 
data. A data point is recorded as either exceeding the standard or not. One concern is the 
information loss due to the transformation. In this article, we try to use the raw data 
directly in the assessment process and will focus on the problem of the evaluation of the 
quality of water in a stream segment based on information from a single site. A Bayesian 
approach is used to develop a decision process. In Sections 2 and 3, we will set up the 
Bayesian approach and discuss certain properties of the method when the underlying 

concentration slandard 

Figure 1. Plot of the distribution of a hypothetical chemical concentration. The standard value is set 
so 90% or more of the concentrations are less than the standard if the site is to meet the use 
designations required by law. 
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distribution comes from a location-scale parameter model. In Section 4, we discuss and 
compare the methods using the normal distribution. 

2. Location-scale models 

2.1 The hypotheses and Bayesian test 

Suppose that in a particular spatial and temporal region, the response variable (e.g., 
dissolved oxygen, fecal coliform, etc.) follows a certain probability distribution. Denote 
by 0 the desired percentile of the distribution (e.g., 90th percentile) that is of interest. 
Further assume that the standard is known and denoted by 0,. This value represents the 
known percentile for the distribution assuming the site is healthy. We assume this to be an 
upper percentile although similar results follow for lower percentiles. In the following we 
consider a family of location-scale parameter models that includes popular distributions 
such as the normal and student's T distributions. 

Let X , ,  . . . ,X, be a random sample of measurements on a single constituent which are 
independently and identically distributed with the form of density function 

f (xIP> a )  =;f
1 x - p  

> 

where g and a are the population mean and standard deviation, respectively. Since we are 
interested in the (th percentile, 0, rather than the mean, we need to derive the relation 
between 0 and (p,  a ) .  Define Z = (X - p) /o .  The density of Z has the fonn f (2) which is 
free from any parameters. Hence, denoting by pi the t th  percentile of Z,  we obtain 

since t =P(X < 0 )  =P(Z < (0 - p ) / a ) .To check the impairment of the monitoring site, 
rather than using EPAs approach that declares impairment if at least 10% of the 
observations exceed the standard 00,we use a statistical tool to declare impairment if the 
true percentage of the population distribution exceeds the standard. In other words, we test 
if 0 > 0,. This is the approach in acceptance sampling by variables (Duncan, 1974). Here 
in the form (2). t in the parameter 0 is usually predetermined. To match the EPAs 10% 
~ l e ,we use t = 0.9. Therefore, we need to use the data to test 

H a  :0 < 0, versus H I  : 0 > Oo. (3 )  

To test the hypotheses in (3). one may consider rejecting the null hypothesis when the 
posterior probability of the alternate hypothesis given the data is large, i.e. 

where q is a predetermined number. In form (41, ~ " ( ~ , ' l g ( ~ ~ )stands for the posterior 
probability of the alternative hypothesis H I ,  given that the data is observed. 
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2.2 An example with a normal population 

The analysis will consider data as arising from a normal distribution. Although the 
distribution of many measurements is not normal, it is quite common that under certain 
transformation of the variables, the underlying distribution of the measurements may 
approximately follow a normal distribution (see for example Wild et al. (1996)). The 

of ihe statistical tests using the Bayesian approach under a normal population 
will be discussed in detail in Sections 3 and 4. In this section. we describe the test in 13)~ ~ ~ ~~~ ~~~ ,-,~~-~ 

where the data is a sample from normal population. Further, we will apply the method to a 
real data set. 

Suppose that X,,. . . ,X,,is a random sample from a normal distribution and we want to 
test the hypotheses in (3). Using the Bayesian approach described in Section 3, we 
evaluate the null hypothesis using the statistic 

where X is the sample mean and Sx the sample standard deviation. The hypothesis is 
rejected if T > to where to is the critical value for standards at the upper tail of the 
distribution and T < - t o  for standards based on the lower tail. Critical values for T based 
on small sample sizes are provided in Table 1. 

Table 2 provides an example of dissolved oxygen data collected at one site over a two- 
year period. Using the raw score approach (EPA's method) with a standard of 5.0 (low 
dissolved oxygen is not good), we find that three observations are below the standard. 
Since N = 24 the site would be declared as impacted by the EPAs raw score approach. If a 
Binomial model with p = 0.10 is assumed, a value of 3 is actually quite likely (the 
probability of observing 3 or fewer values below the standard of 5.0 is 0.786). Hence, 
declaration of non-impairment would be made using this approach. On the other hand, 
using the above test with sample mean = 7.03 and standard deviation of 1.787, the value 

Table 1. Cutoff values for the non-central r statistic Twhen the value q is set at 0.9 and the 
standard is above the mean. In the table, n is sample size and to, which is described in 
Rcsult 6, is the critical value associated with the aiven sam~le size. 
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Table 2. Dissolved oxygen data for 1995 and 1996. 
Values smallerthan the standard are indicated bv an *. 
-
Yeor Month Dissolved O m e n  

of the statistic is T =5.56. The decision is to reject the hypothesis of no impairment if the 
statistic is smaller than the critical value. With acritical value of to =4.763for n =24, the 
no impairment decision would also be made. Evaluation of the assumptions of the model 
indicated that the data were autocornelated. We used the adjustment procedure in Darken er 
a/ .  (2000) and Wilks (1997) to account for variance inflation due to autocornelation 
assuming an AR(I) model and found the decision did not change. 

3. Bayesian analysis 

3.1 Reference priors 

To conduct a Bayesian analysis, prior information needs to be elicited. If there is a priori 
information about the hypotheses, clearly we need to incorporate the information in the 
analysis. Otherwise, noninfomative priors such as reference priors (Bemardo, 1979) may 
be used. Reference priors are considered as "default" priors or "objective Bayes priors" 
because they usually maintain certain frequentist propelties while Bayesian flexibility is 
still available. They are quite commonly used in many statistical models. Although several 
different approaches for obtaining non-informative priors have been proposed in literature 
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(for details, see Kass,and Wasserman, 1996 and the references therein), the reference prior 
algorithm will be used in this study. This algorithm has an advantage in multi-dimensional 
problems if parameters of interest and nuisance parameters can be distinguished (see also 
Berger and Bernardo, 1992). Since the reference prior obtained in this section is uniform 
through the location parameter, it may be viewed as avoiding bias by using informative 
priors. 

The parameter setting for the problem in Section 2 is no longer (p ,a). Instead, we are 
interested in (8,o) where 0 is the parameter of interea and a is a nuisance parameter. The 
reference prior for this setting is provided by the following result whose proof is shown in 
the Appendix. 

Result 1 Suppose that a location-scale parameter model as in Equation ( I ) is considered 
with the parameters (0, a )  where 0 is defined in Equation (2). Under certain regularity 
conditions, the reference prior of (0,a )  wlzen 0 is rhe parameter of interest and a is a 
m~isnnceporamerer can be expressed as 

where "a " means "proporrional to." 

The posterior distribution of (0, a )  thus can be expressed as follows, 

1 " x . - p
n(0,a I 5) a prior x posterior a - x 

f (L); = I  0 

It is noted that for a one-sided hypothesis testing problem such as Equation (3), one can use 
non-informative priors to yield results similar to a frequentist analysis. In particular, the 
posterior probability of the null hypothesis is similar to thep-value (Berger, 1985, page 
147). For instance, if one is willing to reject the null hypothesis at the level of significance 
0.1, one can simply set the q value in Equation (4) to 0.9. 

3.2 Error Probabilities 

To further study the posterior probability of the alternative hypothesis in Equation (4) and 
the two types of error probabilities for a location-scale parameter model, we have the 
following result whose proof is located in the Appendix. 

Result 2 For the model in Equation ( I ) with the hyporheses in Equation (3),suppose the 
rejection region is determined by P(H, I&)> q. Define z; = (xi - On)/an +p i  and 
w, = (xi - O,)/a, +p t .  Then the Type I error probability of rejecting Hn is 
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where 


S. ,oS:~"-~n:=~fbc+v(~,  -P<) -u)dvdu 

P,(Hl Ik) = (7)

S ? , S ~ ~ " - ~ n : = ~ f b < + v ( z ,-P,) -u)dvdu.  

which i s j h e  from the scale parameter no. The Type II errorprobability when the rrue 0 is 
01 = 00 + b<- P < , ) ~ I  is 

where 

ju,vb , S : ~ " - ~ f l : = , f b , + v ( w i - ~ ~ ) - u ) d v d u<,-,,: 
p p ( H ~ l x )= ' (8)S: j: v n - 2  n ; = l f ~ C+ V ( W ~-PO -U ) ~ V ~ U  

which is also free of the scale parameter 0,. 

Note that the scale parameter does not affect calculation of the Type I error probability. 
Furthermore, if we try to distinguish the quantiles pi and p<, in calculating the Type I1 
erroi, the scale parameter also has no effect. The argument for this is similar to the 
argument in calculating the Type I1 emor probability for the Binomial model (see Smith er 
al., 2001). 

3.3 Bayesian analysis with certain information 

Although people may not be able to specify a priori information on the parameters 
involved in the model, it is quite common that the experimenters or researchers can assign 
certain prior probability over the assumed hypotheses. If this is the case, we may assume 
that P(Hl )  = v = 1 -P(Ho), where Ho and H I  are defined in Equation (3). If the same 
priors as in Section 3.2 are used here, i.e., uniform priors for the quantile parameter and the 
logarithm of the standard deviation, we need to recalculate the posterior probabilities of 
the two hypotheses. The following result can be easily obtained "sing the simple posterior 
distribution calculation and thus its proof is omitted. 

Result 3 Denote by PY(Hl(x) rhc poste~~iorprobabiliry of rhe alternative hyporhesis H I  
when rhepriorprobability of this alternative hypothesis is v. Also, denote by P(Hl lx) the 
posteriorprobability of rhe alternarive hyporhesis H I  when there is no apriori information 
for the hypotheses. Then we have the relation 

Note that from the above relation, the criteria for rejecting the null hypothesis are similar 
between this setup and the one in Section 3.2. The only difference is the cutoff value under 
the same level of significance. It is interesting to notice that when v = 0.5, the situation 
where there is no between the null and alternative hypotheses, both posterior 
probabilities are the same. Hence, the same cutoff value should be used. On the other hand, 
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if v is more than 0.5 which implies that H ,  is more likely, then PY(H,I&) > >(HI I&) which. 
shows that thc null hypothesis is more likely to be rejected. Suppose for instance v = 0 75 
and [he reicction rule u ~ i n c  P' is P ' ( H ,x )  > 0.9 (which is essentinllv usine a sienificancc . .,-, . - -
level of <I ) .  This rejection rule is similar to using the criterion in Section 3.2 (P(H,I;)) 
with a significance level 0.25. Thus it is easier to reject the null hypothesis. 

The decision ~ l e s  as well as error probability calculations from Section 3.2 can also be 
applied here since both posterior probabilities for the alternative hypothesis are simple 
functions of each other. 

3.4 Transformations 

In environmental applications, data may be transformed using operations such as 
logarithm, squared root, etc. to make the data approximately normal. Some distributions 
such as the lognormal are generic transformed distributions of location-scale models. In 
this section, we investigate the impact of a transformation on our problem. The result is 
presented in the following proposition. 

Result 4 Suppose that a location-scale parameter model as in Equation ( I )  is considered 
with the parameter setting (0 ,  a )  where 0 is defined as in Equation (2). Dejine a 
transformation Y = g ( X )  such that g is a stricrly increasing function in X withfinite 1st 
order derivative. Then 7 = g(0 )  is the t th  quantile of Y.The reference prior for (q,  a )  is 
n(q,  a )  a 1h1(q)l/a where h is the inverse function of g. Furthermore, Results 2 and 3 
above as well as the results in the next seczions are all valid. 

The proof of this result is trivial since one only needs to do the straightforward 
transformation calculations. To obtain the reference prior of (q,a), the invariance result 
for change of parameters in Datta and Ghosh (1995) can be used directly since the 
transformation of the parameter only involves the parameters of interest (0  to q). 

It should be noted that if the transformation function g is a strictly decreasing function in 
X then we could simply make another transformation -g and the above result still holds. 

4. Normal population 

In this section, the procedure we described in Section 3 will be applied to the normal 
populations. 

4.1 Error probability comparisons 

In this subsection, we give the expressions of the error probabilities in Result 2 for a 
normal population. Furthermore, they are used to compare the error probabilities of the 
tests using EPA's "raw score" method and Virginia DEQ's binomial distribution method. 

Suppose X,,. . . ,X .  are i.i.d. normal random variables with mean f i  and standard 
deviation a .  Result 2 in Section 3 can be simplified to the following result whose proof is in 
the Appendix. 
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Result 5 For the normal case, the Type I and Type I1errorprobabilities can be expressed 
US 

respectively, where 2-n(0,  l/n),.f - x : _ ,  and I ,  an indicatorfunction. Here 

and 

w/le,r Y - X i _ ,and @(x)  is the c.d f of the standard normal distribution 

Note that the computational formulae for the above expectations may be obtained using 
either numerical integration or simulation. In this section, we will use simulation along 
with the Monte-Cado method to derive the above probabilities when the underlying 
distribution is normal. In Figs 2 and 3 we compare these probabilities to those derived 
using the raw score and Binomial methods. 

It is known that EPA's raw score method tends to over-regulate in the sense that a site is 
easier to be declared impaired than using the Binomial method (Smith et al., 2001). 
Comparing the Type 1 and Type I1 error between these two methods in the graphs (Figures 
2 and 3), the statement is clearly shown to be true. On the other hand, it is interesting to 
notice that the Type I error probability using the raw data approach is quite close to that of 
using the Binomial method (note that the Type I error probability using the Binomial can 
not always be controlled at a fixed level because of its discreteness). This means that 
although the Bayes rule is used here, namely rejecting H ,  when P(H,l&) > 0.9, the results 
are approximately equivalent to the usual classical results when the level of significance is 
controlled at 0.1. This is no surprise since a non-informative prior analysis usually yields 
results quite similar to frequentist analysis. 

0.65 I 

Raw data (Normal) 

2 10 26 34 42 50 

sample size 

Figure 2. Comparisons of the Type I error probability using the three procedures. 
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- - Type II Error Probabilily Comparison 

nial 
Raw data (Normal) 

n=sample size 

Figure 3. Comparisons of the Type I 1  error probability using three procedures using a = 0.10. 

The Type I 1  error probability using the raw data Fig. 3 shows more satisfactory results 
since it is always better than that o f  using the Binomial method. Although EPA's raw score 
method always results in a lower Type I1 error probability, it is at the expense o f  the Type 1 
error probability. However, it can be seen that when the sample size tends to be large, the 
5 p e  I1 error probabilities using the raw score method and the raw data method tend to 
agree. Based on these observations, we conclude that using the raw data approach has 
advantages in terms o f  the error probabilities discussed above when the sample size is 
moderate to large. The results presented here are perhaps biased in favor o f  the raw data 
method as the data were generated with underlying normal distributions. Clearly the 
robustness o f  the method needs to be evaluated. 

4.2 Rejection rules 

An explicit form o f  the rejection rule as in Equation (4)can be easily obtained when the 
underlying population distribution is normal. We have the following result whose proof is 
presented in the Appendix. 

Result 6 Given the setup as in Section 2 under a normal population with an upper tail 
standard, the rejection criterion (4) is equivalent to the criterion of rejecting the null 
hypothesis when 

where X is the sample mean, S, the sample statzdard deviation and to a cutoff value. 
Furthermore, the statistic Tfollows a non-central student t-distribution (cf.Johnson et al., 
1995,page 508) with non-centrality parameter f i ( p  - O0)/aand degrees of freedom 
n - 1 when the original normal population has mean p and standard deviation a. 
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0 1 
-1 

-2 . 
Cutoft values of T lor the 

-3 . rejection crlferon(q= 0.9) 

4 .  

-5 . 

-6 . 

-7 -
Mean values of the lest statistic T 


-8 when the null hypothesis is lrue 


-9 . 

Figure 4. Simulated cutoff values and means for the statistic for the rejection rule P(H,1s) > 0.9 
under a normal population. 

Using simulation, we can find the cutoff value of the T statistic for rejecting the null 
hypothesis. Fig. 4 below provides the simulated cutoff values of T when q is given as 0.9 
for sample sizes ranging from 2 to 50. Also, the associated means of Tare  given in the 
figure. 

Table 1 provides the critical values of the statistic T for various sample sizes when q is 
0.9. 

5. Discussion 

In this paper, we discussed the problem of using raw measurements to monitor water 
conditions for impairment checking instead of using "threshold data". Other than the 
simplicity and perhaps some other reasons to use threshold data, we feel that the use ofraw 
measurements should be more beneficial in making accurate estimation and prediction. 

Although the Bayesian methodology is employed in this article, traditional non-
Bayesian analysis can be done similarly. The reason we use Bayesian analysis here is 
because we feel it's more flexible in terms of incorporating historical information into the 
current data by assigning certain informative prior distribution to the parameters. For 
instance, we only studied reference priors over the parameters. It is quite reasonable to 
assign a prior distribution of O to be more concentrated around the standard level Oo. 
Furthermore, if a piece-wise prior preference of the hypotheses is given, a piece-wise 
informative prior distribution can be elicited for 0. Though the computation will be not as 
easy as given in this paper, MCMC Gibbs sampling provides an approach for computation. 

Finally, although in this article we investigate the situation when the alternative 
hypothesis is 0 > 00,to consider an alternative hypothesis 0 < O0 we only need to use 
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the same method discussed in the arlicle for the negative values of X since only the 
location-scale model is studied here. Also there would be problems with this approach 
for two-sided tests due to the improper prior (Berger and Pericchi, 1996). As pointedout 
in Berger, Pericchi and Varshavsky (1998) this is not a problem for our location-scale 
model. 

Appendix 

A.l 
Proof of Result 1: First, it can be shown that the Fisher information matrix for the 
parameter setting ( & a )  is given as follows, 

where a, = $ l ' f a ( z ) / f ( z )dz ,  provided their existence for 1 =0,1,2. To make a 
transformation of (p,a) to ( 0 ,a ) ,  the Jacobian matrix of the transformation is 

Therefore, the Fisher information for ( 0 ,o) can be expressed as 

l b b 
I(.. 0 )  = (; b ; )  > 

whcre h,'s are constants, for I = 0, 1:2. The result then follows using the algorithm for 
calculating the reference priors. 

A.2 
Proof of result 2: The Type I error probability using the rejection rule P(HI  I.r)> q is 

where z,'s are defined in the result for I = 1,. ..,n. The probability 

After making a transformation of the variables u = ( 0  -Oo)/o and v = uo /o ,  the result is 
straightforward. For Type I1 error probability, the proof is similar. 
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A.3 
Proof of Result 4: For the normal population, n:=I f ( p c  +v(zi -p<) - u) in (8)can be 
expressed as 

where 
1 "i=-cq,";=I and ~S;?=e(~,-i)~.i= I 

Making the transformation r = f i [ u  - (pt + v(Z - and y = v2S:, the result for the 
Type I error probability follows after a little algebra. Similarly we can get the result for 
Type I1 error probability. 

A.4 
Proof of Result 5: Transform ( 0 , ~ )to (u,v) by u = f i ( 0  - Y ) / & = ~ s ,  and 
v = &=iSS,/ufi, the posterior probability of the alternative hypothesis can be written 
as  

Let r be defined in (9). After integrating u out and letting y = nv2,the posterior probability 
can be written as 

where g(y) is the density of ax2-distribution with degrees of freedom n - 1. Clearly, the 
above formula shows an increasing function of r .  Hence, P(HllT) > q is equivalent to 
r > to. On the other hand, 

follows a non-central student r-distribution as defined in Johnson era/ . ,  1995. 

Acknowledgments 

The work was partially funded by the Virginia Water Resources Research Center and 
United States Environmental Protection Agency's Science to Achieve Results (STAR) 
(Grant No. R82795301). Although the research described in the article has been funded 
wholly or in part by the United States Environmental Protection Agency's STAR 
programs, it has not been subjected to any EPA review and therefore does not necessarily 
reflect the views of the Agency, and no official endorsement should be inferred. The 



392 Ye, Smirh 

authors would like to thank the referees for their insightful comments and helpful 
suggestions. 

References 

Bereer. 1. (1985) Statistical Decision Theon, and Bavesion Analvsis. second edition. Sorinser- - .  . . . . . .  -
Verlag, New York. 

Berzer, I, and Bemarda. 1. (1992) On the develoDment of reference priors (with discussion). In-
Bayesian Stotsities 4, J.M. Bernardo, 1.0.Berger, A.P. Dawid and A.F.M. Smith (eds), Oxford 
University Press, pp. 3540. 

Berger, J. and Pericchi, L. (1996) Intrinsic Bayes factor for model selection and prediction. .lourno1 
of the American Sraritsicnl Association, 91, 109-22. 

Berger, I., Pericchi, L., and Varshavsky, J. (1998) Bayes factors and marginal distributions in 
invariant situations. Sonkhyn A, 60,307-21. 

Bemardo, 1. (1979) Reference posterior distributions for Bayesian inference (with discussion). 
Journol of the Royol Stntisrical Sociery Series B,  41, 113-47. 

Commonwealth of Virginia (1997) Review of rhe Department of Environmenrnl Quality. House 
Document No. 67. 

Darken. P.F.. Holtzman, G.I., Smith, E.P., and Zipper, C.E. (2000) Detecting changes in trends in 
water quality using modified Kendall's tau. Environrnenrrics. 11,423-34. 

Datta, G.S. and Ghosh, M. (1995) Some remarks an noninformative priors. Journol of the American 
Storitsicoi Association, 90, 1357-63. 

Duncan, A.J. (1974) Qualiry Control and lndustriol Sralisrics, Irwin, New York. 
Johnson, N.O.. Kotr, S., and Balakrishnan, N. (1995) Continuous Univariare Distributions, Vol. 2,  

John Wiley & Sons, New York. 
Kass. R.E. and Wasserman, L. (1996) The selection of prior distribution by formal rules. Journalof 

the American Statisn'cal Association, 91, 1343-70. 
Smith, E.P.. Ye. K., Hughes, C., and Shabman, L. (2001) Statistical assessment of violations of water 

quality standards under Section 303(d) of the Clean Water Act. Environmental Science and 
Technology, 35,606-12. 

Wild, P., Hordan, R., Leplay, A., and Vincent, R. (1996) Confidence intexvals for probabilities of 

exceeding threshold limits with censored log-normal data. Environmerrics, 7, 247-59. 


Wilks, D.S.(1997) Resampling hypothesis tests for autocorrelated fields. .lounroi of Climate, 10,65-

82. 

Biographical sketches 

Dr Keying Ye is associate professor of statistics, Virginia Polytechnic Institute and State 
University. His research focuses using Bayesian analysis to help solve problems in 
environmetrics and bioinformatics. 

Dr Eric P. Smith is professor of statistics and director of the Statistical Consulting 
Center, Virginia Polytechnic lnstitute and State University. His research focuses on the 
development and application of statistical methods for analysis of environmental and 
ecological problems. 




