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Section 24.1 Binomial PmbabilHies 517 

24.1 BINOMIALPROBABILITIES 

Consides a population consisting of two categories, where p is the proportion of indi- 
viduals in one of the categories and q r 1 -p is the pmpo~tion in the other. Then the 
probability of selecting at random fmm this population a member of the f b t  caagoIy is 
p, and the probability of selecting a member of the second category is q.t 

For example, let us say we have a population of female and male animals, in 
proponions of p = 0.4 . a d  q = 0.6, respectively, and we take a random sample of 
two individuals from the population. The probability of the first being a female is p 
(i.e.. 0.4) and the Ijrobability of the second boing a female is also p. As the probability 
of two mutually exclusive events both occurring is the product of the probabilities of the 
two separate events (Section 5.7), the probability of having two females in a sample of 
two is (p)(p) = p2 10.16: the probability of the sample of two consisting of two males 
is (q)(q) =q2 E0.36. 

What is the probability ofthe sample of two consisting of one male and one female7 
This could occur by the fixst individual being a female and the second a male (with a 
probability of pq) or by the first being amale and the second a female (which would occur 
with a probability of qp). The probability of either of two mutually exclusive outcomes 
is the sum of the probabilities of each outcome (Section 5.6). so the probability of one 
female and one male in the sample is pq +qp  = 2pq =2(0.4)(0.6) = 0.48. Note that ! 
0.16 +0.36 +0.48 r.1.00. 



I 

5'18 More on Dichotomous Variables Chapter 24 :L 

If we performed the same exercise with n =4, we would find that the probability 
of four females is p4 = (0.4)4 = 0.0256, the probability of three females (and one male) 
is 4p3q = 4(0.4)"0.6) = 0.1536, the probability of two females is 6p2qZ = 0.3456, the 
probability of one female is 4pq3 = 0.3456. and the probability of no females (i.e.. all 
four are male) is q4 = 0.1296. (The sum of these five tenns is 1.0000, a good arithmetic 
check.) 

If a random sample of size n is taken from a binomial population, then the prob- 
ability of X individuals being in one category (and, therefore. n -X individuals in the 
second category) is 

P ( X )  = (;)pxqn-x. (24.1) 

In this equation. pxq"-x refers to the probability of sample consisting of X items. each 
having a probability of p, and n - X items, each with probability q. The binomial 
coeficient, 

is the number of ways X items of one kind can be arranged with n - X items of a 
second kind, or, in other words, the number of possible combinations of n items divided 
into one group of X items and a second group of n - X items. (See Section 5.3 for a 
discussion of combinations; Equation 5.3 explained the factorial notation. "!".) Therefore, 
Equation 24.1 can be written as 

n! 
P ( X )  = PXq"-x.

Xl(n - x)! 

Thus. (;)pXqn-X is the Xth term in the expansion of (p  + q)", and Table 24.1 
shows this expansion for powers up through 6. Note that for any power. n, the sumof 
the two exponents in any term is n. Furthermore, the first term will always be p". the 
second will always contain pn-'q, the third will always contain pn-'q2, etc.. with the 
last term always being qn. The sum of all the terns in a binomial expansion will always 
be 1.0. for p + q = 1, and (p  + q)" = 1" = 1. 

As for the coefficients of these terms in the binomial expansion, the Xth term of the 
nth power expansion can be calculated by Equation 24.3. Furthermore, the examination 
of these coefficients as shown in Table 24.2 has been deemed interesting for centuries. 

TABLE 24.1 Expansion of the Binomial, (JJ + q)" 

n (P  +4) -

1 P + ' l  
2 p2 + 2 p q  + q2 
3 p3 + 3 p l q  +3pq2  +q 3  
4 p4 + 4 p 3 q  + 6 p 1 q 2  + 4 p q 3  + q 4  
5 p5 + 5 p 4 q  + 10p3q1 + 10plq3 + 5pq4  +4' 
6 p6 + 6 p 5 q  + 15p4q2 + ZOdq3  + 15p244 +6 p q 5  -q 6  
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TABLe 2 4 3  Binomial Coefficient, "Cx 

n XI 0 1 2 3 4 5 6 7 8 9 10 Sum of coefficients 

This mangement is known as Pascal's triangle: We can see from this triangular array 
that any binomial coefficient is the sum of two coefficients on the line above it, namely. 

This can be more readily observed if we display rhe tdangular array as follows: 
1 

1 1 
I 2 1 

1 3 3 1 
1 4 6 4 1 

1 5 10 10 5 1 

Also note that the sum of all coefficients for the nth power binomial expansion is 2". 
Appendix Table B.26a presents binomial coefficients for much large1 n's and X's, and 
they will be found useful later in this chapter. 

Thus, we can calculate probabilities of category frequencies occurring in random 
samples from binomial population. If, for example.-a sample of five (i.e.. n = 5) is taken 
from a population composcd of 50% males and 50% females (i.e., p =0.5 and q =0.5) 
then Example 24.1 shows how Equation 24.3 is used to determine tho probability of 
the sample containing 0 males, 1 male, 2 males, 3 males. 4 males, and 5 males. These 

.Blcuao Peacal (1623-1662). French mathematidan and physicist and one of Ula founders of probability 
lhcory (in 1654. immediately before abandoning msthematia to become a mligioua mcluse). H e  had his 
hiangular binomial cooflisicnt &"vation pubii8hed in 1665. allhovgh knowledge of the triangular pmp~rtics 
appears in Chinos* writings aa aarly as 1303 (Cajori, 1954: David. 1962: SrmiL. 1967: 79). P a s 4  also 
invented (at age 19) a mechanical adding and sublvaoting machine which, rhough patented in 1649,pmved t m  
expensive to bs practical to eonsrmct (Asimov. 1982: 130-131). His aigni6cant contributions to Ihe smdy of 
fluid prua-r have b n  honorcd by naming the iotanational unit of pressure the pascal. which is a of 
one newton ~ c rso- mler (where a ncwtonaamcd for Sir Isaac Newton-is Ulc unit of form reorssmrin. . . -
a. one-kilogram mass accalerating at lhe rate of one meter wr second pr second). Pascal is dso  ths name. 
given to a modom computer Imguagc. The relationship of Pascal's mangle to. Cx w.s first published in 1685 
by lhc Engtish mathLmatioian. John Wallis (1616-1703) (David. 1962: 123-124). 
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becomes 

EXAMPLE 24.1 Computing binomid pmbabilltleies, P ( X ) ,"hue n = 5,p = 0.5, and p = 0.5 
(following Equation 24.3). 

X P(X) 


51
0 -(0.5°)(0.5') = (1)(1.0)(0.03125) = 0.03125
0151 

51


1 -(0.5')(0.5') = (5)(0.5)(0.0625) = 0.15625
1141 

51


2 -(0.5')(0.5~) = (10)(0.25)(0.125)= 0.31250
2131 

51


3 3121(0.53)(0.52)= (10)(0.125)(0.25) =0.31250 

51

4 -(0.5')(0.5') = (5)(0.0625)(0.5) = 0.15625

4111 

51
5 ~ ( 0 . 5 ' ) ( 0 . S 0 )= (1)(0.03125)(1.0) = 0.03125 
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Fl- m.1 I h c  binodd dirtribution. for n = 5. (a) p = q = 0.5. (b)p = 0.3. 
q = 0.7. (c) p = 0.1, q =0.9. lheae graphs wtrr drawn utilizing the p m m o n s  given 
by Equation 24.1. 

especially in the tails of the distribution (i.e.. for low X and for high X),as shown in 
Example 24.3. If p is very small,then the use of the Poisson distribution (Section 25.1), 
should be considered.. 

The mean of a binomial distribution of counts X, is 

/AX =np. 
the variancet is 

0: ="P4. 

and the standard deviation of X is 

ex = ,biz. 

.RafS (1956) and Molsnur (1969~. 1969b) discuss several lppmximations to the binomial dismbution. 
including the normal pnd Poiason distributions. 

*A me-o ofsymmetry (see Secdoa 6.1) far a b i i distribution is ~ 

y ,  -4-P (24.7)m. 
so it can bc seen that yl = 0 only when p - q = 0.05. yl > 0 implies a diarribution skewed to the righl (ar 
in Pigs. 24.lb md 24.1~)and n < 0 indicates a distribution skewed to the left. 
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-

EXAMPLE 14.2 Computing blnomfnl probsbllltles. P(X), where n = 5, p = 0.4. q = 0.7 (lollow- 
lng Equation 24.3). 
! 

X P(X) 

51
0 E(~.3°)(0.75) = (1)(1.0)(0.16807) = 0.16807 

1 ( 0 . 3 ~ ) ( 0 . 7 ' )  = (5)(0.3)(0.2401) = 0.36015
1141 

2 2(0.3')(0.7~) = (10)(0.09)(0.343) = 0.30870
2131 

S!
3 -(0.3~)(0.7') = (10)(0.027)(0.49) - 0.13230

3121 

51


4 ~ (0 .3 ' ) (0 .7 ' )  = (5)(0.@381)(0.7)= 0.02835 

51
5 -(0.3~)(0~7~)= (l)(O.OM43)(1.0) = 0.002435101 

EXAMPLE 24.3 Computing blnomial pmbabiUtlen, P(X). Kith n = 400.11 = 0.02, and q = 0.98. 

(Many calculators can operate with Large powers of numbers; otherwise. logarithms may be used.) 

X P ( x )  

n l' O!(n -0)lP 
"-'= q" = 0.9- = 0.W031 

"1 1 "-1 = npq"-' = (400)(0.02)(0.98~~)= 0.00253
I I ( ~- 111' ' 

"1 1 " - 2 -
Z ! ( ~ - Z ) I ~ '  "(n2; 1)p'qi-2 = 2 = 0.01028(400)(399) (0.02~)(0.9839~) 

nl , "-3 - 4"- I)(" - 2) dpa-3 = (400)(399)(398) (0,021)(~,~~397) 
3 1 ( n - 3 ) ! ~ '  - 31 (3)(2) 

= 0.02784 

and so on. 

Thus, if we have a binomially distributed population where p (e.g., the proponiod of 
males) = 0.5 and q (e.g.. the proportion of females) = 0.5 and we take ten samples fSom 
that population, the mean of the ten X's (is., the mean number of males per sample) 
would be expected to be np = (10)(0.05) = 5 and the standard deviation of the ten X ' S  

would be expected to be &Zf = J(10)(0.5)(0.5) = 1.58. Our concern typically is 
with the distribution of the expected probabiLities rather than the expected X's, as will 
be explained in Section 24.3. 






