Biostatistical Analysis

Fourth Edition

JERROLD H. ZAR

Department of Biological Sciences
Northern Illinois University

PRENTICE HALL
Upper Saddle River, New Jersey 07458

Libnary of Congress Cataloging in Publication Data
Zar, Jerrold H.
Biostatisticnl analysis / Jerrold H. Zar, - 4th ed.
p. cm.

Includes bibliographical references (p.) and index.
ISBN 0-13-081S42-X (alk. paper)

1. Biometry. 1. Tide

QH323.5.237 1999

570.1'5195-de21

98-34062
CIP

Editorial/production supervision: Interactive Composition Corporation Cover director: Jayne Conte
Cover designer: Bruce Kenselaar
Manufacturing manager: Trudy Pisciotti
Editor: Teresa Ryu
Senior editor: Sheri L. Snavely
Editorial assistants: Nancy Bauer and Lisa Tarabokjia
(C) 1999, 1996, 1984, 1974 by Prentice-Hall, Inc. Upper Saddle River, New Jersey 07458

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher.

Printed in the United States of America
109

ISBN D-13-081542-X

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S. A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hail of Japan, Inc., Tokyo
Simon \& Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Contents

PREFACE x

1 INTRODUCTION 1
1.1 Types of Biological Data 2
1.2 Accuracy and Significant Figures 5

2 POPULATIONS AND SAMPLES 16
2.1 Populations 16
2.2 Samples from Populations 17

3 MEASURES OF CENTRAL TENDENCY
3.1 The Arithmetic Mean 20
3.2 The Median 23
3.3 Other Quantiles 26
3.4 The Mode 27
1.3 Frequency Distributions 6
1.4 Cumulative Frequency Distributions 13
2.3 Random Sampling 17
2.4 Parameters and Statistics 18

20

3.5 Other Measures of Central Tendency 28
3.6 The Effect of Coding Data 29

Exercises 31

4 MEASURES OF DISPERSION AND VARIABILITY 32
4.1 The Range 32
4.2 Dispersion Measured with Quantiles 34
4.3 The Mean Deviation 34
4.4 The Variance 35
4.5 The Standard Deviation 39

5 PROBABILITIES 48
5.1 Counting Possible Outcomes 49
5.2 Permutations 50
5.3 Combinations 54
5.4 Sets 56
4.6 The Coefficient of Variation 40
4.7 Indices of Diversity 40
4.8 The Effect of Coding Data 44

Exercises 47
5.5 Probability of an Event 58
5.6 Adding Probabilities 59
5.7 Multiplying Probabilities 61

Exercises 63
6.4 Introduction to Statistical Hypothesis Testing 79
6.5 Assessing Departures from Normality 86

Exercises 89

7. ONESAMPLE HYROTHESES 91

7.1 Two-Tailed Hyporheses Concerning the Mean 91
7.2 One-Tailed Hypotheses Concerning the Mean 96
7.3 Confidence Limits for the Population Mean 98
7.4 Reporting Variability about the Mean 100
7.5 Sample Size and Estimation of the Population Mean 105
7.6 Power and Sample Size in Tests Concerning the Mean 105
7.7 Sampling Finite Populations 108
7.8 Confidence Limits for the Population Median 110
7.9 Hypotheses Conceming the Median 110
7.10 Confidence Limits for the Population Variance 110
7.11 Hypotheses Concerning the Variance 112
7.12 Power and Sample Size in Tests Concerning the Variance 113
7.13 Hypotheses Concerning the Coefficient of Variation 114
7.14 Hypotheses Concerning Symmetry and Kurtosis 115

8 TWO-SAMPLE HYPOTHESES 122

8.1 Tosting for Difference between Two Means 122
8.2 Confidence Limits for Population Means 129
8.3 Sample Size and Estimation of the Difference between Two Population Means 131
8.4 Power and Sample Size in Tests for Difference between Two Means 132
8.5 Testing for Difference between Two Variances 136
8.6 Confidence Interval for the Population Variance Ratio 139
8.7 Sample Size and Power in Tests for Difference between Two Variances 140

Exercises 120
8.8 Testing for Difference between Two Coefficients of Variation 141
8.9 Nonparametric Statistical Methods 145
8.10 Two-Sample Rank Testing 146
8.11 Testing for Difference between Two Medians 155
8.12 The Effect of Coding 155
8.13 Two-Sample Testing of Nominal-Scale Data 156
8.14 Testing for Difference between Two Diversity Indices 156
Exercises 159
9 PAIRED-SAMPLE HYPOTHESES 161
9.1 Testing Mean Difference 161
9.2 Confidence Limits for the Population Mean Difference 164
9.3 Power and Sample Size in Paired-Sample Testing of Means 164
9.4 Testing for the Difference botween Variances from Two Correlated Populations 164
10 multisample hypotheses: the analysis of variance
177
10.1 Single-Factor Analysis of Variance 178
10.2 Confidence Limits for Population Means 189
10.3 Power and Sample Size in Analysis of Variance 189
10.4 Nomparametric Analysis of Variance 195
10.5 Testing for Difference among Several Medians 200

11 MULTIPLE COMPARISONS
 208

11.1 The Tukey Test 210
11.2 The Newman-Keuls Test 214
11.3 Confldence Intervals Following Multiple Comparisons 215
11.4 Comparison of a Control Mean to Each Other Group Mean 217
10.6 Homogeneity of Variances 202
10.7 Homogeneity of Coefficients of Variation 204
10.8 The Effect of Coding 206
10.9 Multisample Testing for Nominal-Scale Data 206
Exercises 206
11.5 Scheffe's Multiple Contrasts 219
11.6 Nonparametric Multiple Comparisons 223
11.7 Nonparametric Multiple Contrasts 226
11.8 Multiple Comparisons among Medians 226 11.9 Multiple Comparisons among Variances 228 Exercises 230

12 two-factor analysis of variance
12.1 Two-Factor Analysis of Variance with Equal Replication 232
12.2 Two-Factor Analysis of Variance with Unequal Replication 245
12.3 Two-Factor Analysis of Variance without Replication 248
12.4 The Randomized Block Experimental Design 250
12.5 Repeated-Measures Experimental Designs 255
12.6 Multiple Comparisons and Confidence Intervals in Two-Factor Analysis of Variance 260
12.7 Power and Sample Size in Two-Factor Analysis of Variance 261

231
12.8 Nonparametric Randomized Block or Repeated-Measures Analysis of Variance 263
12.9 Multiple Comparisons for Nonparametric Randomized Block or Repeated-Measures Analysis of Variance 267
12.10 Dichotomous Nominal-Scale Data in Randomized Blocks or from Repeated Measures 268
12.11 Multiple Comparisons with Dichotomous Randomized Block or Repeated-Measures Data 270
12.12 Introduction to Analysis of Covariance 270 Exercises 271

13 DATA TRANSFORMATIONS
 273

13.1 The Logarithmic Transformation 275
13.2 The Square Root Transformation 275
13.4 Other Transformations 280
13.3 The Arcsine Transformation 278

14 MULTIWAY FACTORIAL ANALYSIS OF VARIANCE
14.1 Three-Factor Analysis of Variance 283
14.2 The Latin Square Experimental Design 286
14.3 Higher-Order Factorial Analysis of Variance 287
14.4 Blocked and Repeated-Measures Experimental Designs 288
14.5 Factorial Analysis of Variance with Unequal Replication 298
14.6 Multiple Comparisons and Confidence Intervals in Multiway Analysis of Variance 299
14.7 Power and Sample Size in Multiway Analysis of Variance 300
Exercises 300

15 NESTED (HIERARCHICAL) ANALYSIS OF VARIANCE 303

15.1 Nesting within One Main Factor 305
15.2 Nesting in Factorial Experiments 308
15.3 Multiple Comparisons and Confidence
15.4 Power and Sample Size in Nested Analysis of Variance 311 Intervals 310

Exercise 311

16 multivariate analysis of variance
16.1 The Multivariate Normal Distribution 313
16.2 Multivariate Analysis of Variance Hypothesis Testing 316
16.3 Further Analysis 322
16.4 Other Experimental Designs 322

Exercises 323

17 SIMPLE LINEAA REGRESSION 324

17.1 Regression vs. Correlation 324
17.2 The Simple Linear Regression Equation 326
17.3 Testing the Significance of a Regression 333
17.4 Confidence Intervals in Regression 337
17.5 Inverse Prediction 342
17.6 Interpretations of Regression Functions 344
17.7 Regression with Replication and Testing for Linearity 345
17.8 Power and Sample Size in Regression 350
17.9 Regression through the Origin 351
17.10 Data Transformations in Regression 353
17.11 The Effect of Coding 357

Exercises 358

为

18 COMPARING SIMPLE LINEAR REGRESSION EQUATIONS
 18.1 Comparing Two Slopes 360
 18.2 Comparing Two Elevations 364
 18.3 Comparing Points on Two Regression Lines 368
 18.4 Comparing more than Two Slopes 369
 18.S Comparing more than Two Elevations 372
 18.6 Multiple Comparisons among Slopes 372

360
18.7 Mulkiple Comparisons among Elevations 373
18.8 Multiple Comparisons of Points among Regression Lines 374
18.9 An Overall Test for Coincidental Regressions 375
Exercises 375

19 simple Linear correlation 377
19.1 The Correlation Coefficient 377
19.2 Hypotheses about the Correlation Coefficient 381
19.3 Confidence Intervals for the Population Correlation Cocfficient 383
19.4 Power and Sample Size in Correlation 385
19.5 Comparing Two Correlation Coefficients 386
19.6 Power and Sample Size in Comparing Two Correlation Coefficients 388
19.7 Comparing more than Two Correlation Coefficients 390
19.8 Multiple Comparisons among Correlation Coefficients 392
19.9 Rank Correlation 395
19.10 Weighted Rank Correlation 398
19.11 Correlation for Dichotomous Nominal-Scale Data 401
19.12 Intraclass Correlation 404
19.13 Concordance Correlation 407
19.14 The Effect of Coding 410 Exercises 410
20.1 Intermediate Computational Steps 414

20,2 The Multiple Regression Equation 419
20.3 Analysis of Variance of Multiple Regression or Correlation 422
20.4 Hypotheses Concerning Partial Regression Coefficients 424
20.5 Standardized Partial Regression Coefficients 426
20.6 Partial Correlation 426
20.7 Round-off Error and Coding Data 428 20.8 Seloction of Independent Variables 429 20.9 Predicting Y Values 433
20.10 Testing Difference between Two Partial Regression Coefficients 436
20.11 "Dummy" Variables 436
20.12 Interaction of Independent Variables 437
20.13 Comparing Multiple Regression Equations 437
20.14 Multiple Regression through the Origin 440 20.15 Nonlinear Regression 440
20.16 Descriptive vs. Predictive Models 442 20.17 Concordance: Rank Correlation among Several Variables 443
Exercises 450
21.3 Quadratic Regression 457

Exercises 459

22 testing for goodness of fit
22.1 Chi-Square Goodness of Fit 462
22.2 Chi-Square Goodness of Fit for More than Two Categories 464
22.3 Subdividing Chi-Square Analyses 466
22.4 Chi-Square Correction for Continuity 468
22.5 Bias in Chi-Square Calculations 470
22.6 Heterogeneity Chi-Square 471
22.7 The Log-Likelihood Ratio 473
22.8 Kolmogorov-Smimov Goodness of Fit for Discrete Data 475
22.9 Kolmogorov-Smimov Goodness of Fit for Continuous Data 478
22.10 Sample Size Required for KolmogorovSminnov Goodness of Fit for Continuous Data 481
Exercises 483
23 CONTINGENCY TABLES 48623.1 Chi-Square Antalysis of ContingencyTables 48823.2 Graphing Contingency Table Data 49023.3 The 2×2 Contingency Table 49123.4 Heterogeneity Testing of 2×2 Tables 50023.5 Subdividing Contingency Tables 50223.6 Bias in Chi-Square Contingency TableAnalyses 504
24 MORE ON DICHOTOMOUS VARIABLES24.1 Binomial Probabilities 51724.2 The Hypergeometric Distribution 52324.3 Sampling a Binomial Population 52424.4 Confidence Limits for PopulationProportions 527
24.5 Goodress of Fit for the Binomial Distribution 530
24.6 The Binomial Test 533
24.7 The Sign Test 538
24.8 Power of the Binomial and Sign Tests 539
23.7 The Log-Likelihood Ratio for Contingency Tables 505
23.8 Three-Dimensional Contingency Tables 506
23.9 Log-Linear Models for Multidimensional Contingency Tables 512
Exercises 514

516
24.9 Confidence Interval for the Population Median 542
24.10 The Fisher Exact Test 543
24.11 Comparing Two Proportions 555
24.12 Power and Sample Size in Comparing Two Proportions 558
24.13 Comparing more than Two Proportions 562
24.14 Multiple Comparisons for Proportions 563
24.15 Trends among Proportions 565

Exercises 568
25 TESTING FOR RANDOMNESS 57125.1 Poisson Probabilities 57125.2 Confidence Limits for the Poisson Parameter 57425.2 Confidence Limits for the Poisson Parameter 574
25.3 Goodness of Fit of the Poisson Distribution 57525.4 The Binomial Test Revisited 57825.5 Comparing Two Poisson Counts 58225.6 Serial Randomness of Nominal-Scale Categories 583
25.7 Serial Randomness of Measurements: Parametric Testing 586
25.8 Serial Randomness of Measurements: Nonparametric Testing 587
Exercises 590

26 CIRCULAR DISTRIBUTIONS: DESCRIPTIVE STATISTICS 592

26.8 Diametrically Bimodal Distributions 607
26.2 Graphical Presentation of Circular Data 595
26.3 Sines and Cosines of Circular Data 597
26.4 The Mean Angle 599
26.5 Angular Dispersion 602
26.6 The Median and Modal Angles 605
26.7 Confidence Limits for the Population Mean and Median Angles 605
26.9 Second-Order Analysis: The Mean of Mean Angles 608
-26.10 Confidence Limits for the Second-Order Mean Angle 611
Exercises 614
CIFCULAR DISTRIEUTIONS: HYPOTHESIS TESTING
616
27.1 Testing Significance of the Mean Angle: Unimodal Distributions 616
27.2 Testing Significance of the Median Angle: Omnibus Test 621
27.3 Testing Significance of the Median Angle: Binomial Test 624
27.4 Testing Symmotry around the Median Angle 624
27.5 Two-Sample and Multisample Testing of Mean Angles 625
27.6 Nonparametric Two-Sample and Multisample Testing of Angles 630
27.7 Two-Sample and Multisample Testing of Median Angles 635
27.8 Two-Sample and Multisample Testing of Angular Distances 635
27.9 Two-Sample and Multisample Testing of Angular Dispersion 637
27.10 Parametric One-Sample Second-Order Analysis of Angles 638

27 CIRCULAR DISTRIBUTIONS: HYPOTHESIS TESTING (COntInUEd)

27.11 Nonparametric One-Sample Second-Order Analysis of Angles 639
27.12 Parametric Two-Sample Second-Order Analysis of Angies 641
27.13 Nonparametric Two-Sample Second-Order Analysis of Angles 643
27.14 Parametric Paired-Sample Testing with Angles 645
27.15 Nonparametric Paired-Sample Testing with Angles 647
27.16 Parametric Angular Correlation and Regression 649
27.17 Nonparametric Angular Correlation 653
27.18 Goodness of Fit Testing for Circular Distributions 654
27.19 Serial Randomness of Nominal-Scale Categories on a Circle 658
Exercises 660

APPENDIX A ANALYSIS OF VARIANCE HYPOTHESIS TESTING

App1
A. 1 Determination of Appropriate F 's and Degrees of Freedom AppI
A. 2 Two-Factor Analysis of Variance App5
A. 3 Three-Factor Analysis of Variance App6
A. 4 Nested Analysis of Variance App7
A. 5 Split-Plot and Mixed Within-Subjects Analysis of Variance App8

APPENDIX B STATISTICAL TABLES AND GRAPHS App11

Table B. 1 Critical Values of Chi-Square Distribution App 12
Table B. 2 Proportions of the Normal Curve (One-Tailed) App17
Table B. 3 Critical Values of the t Distribution App19
Table B. 4 Critical Values of the F Distribution App21
Thable B. 5 Critical Values of the q Distribution App58
Table B. 6 Critical Values of q^{\prime} for the One-Tailed Dunnetr's Test App74
Table B. 7 Critical Values of q^{\prime} for the Two-Tailed Dunnett's Test App76
Table B. 8 Critical Values of $d_{\text {max }}$ for the Kolmogorov-Smimov Goodness of Fit Test forDiscrete or Grouped Data. App77
Thble B. 9 Critical Values of \boldsymbol{D} for the KolmogorovSmirnov Goodness of Fit Test for Continuous Distributions App83
Table B. 10 Critical Vaiues of D_{5} for the δ-Corrected Kolmogorov-Smimov Goodness of Fit Test for Continuous Distributions App87
Table B. 11 Critical Vaiues of the Mann-Whitney U Distribution App89
Table B. 12 Critical Values of the Wilcoxon T Distribution App 101
Table B. 13 Critical Values of the Kruskal-Wallis \boldsymbol{H} Distribution Appl04
Table B. 14 Critical Values of the Friedman X^{2} Distribution App106
Table B. 15 Critical Values of Q for Nonparametric Multiple Comparison Testing App107

Table B. 16 Critical Values of Q^{\prime} for Nonparametric Multiple Comparison Testing with a Control App 108
Table B.17 Critical Values of the Comelation Coefficient, r Appl09
Table B. 18 Pisher's z Transformation for Correlation Coefficients, r App 111
Table B. 19 Correlation Coefficients, r, Corresponding to Fisher's z Transformation Appl13
Table B. 20 Critical Values of the Spearman Rank Correlation Coefficient, r_{s} App 116
Table B. 21 Critical Vaiues of the Top-Down Correlation Coefficient, rT App 18
Table B.22 Critical Values of the Symmetry Measure, g_{1} Appl19
Table B. 23 Critical Values of the Kurtosis Measure, 82 Appl21
Table B. 24 The Arcsine Transformation. p^{\prime} App 124
Table B. 25 Proportions, p, Corresponding to Arcsine Transformations, p^{\prime} App 127
Table B.26a Binomial Coefficients, ${ }_{n} C_{X}$ App 129
Table B.26b Proportions of the Binomial Distribution for $p=q=0.5$ App132
Table B.27 Critical Valties of C for the Sign Test or for the Binomial Test with $p=0.5$ App133
Table B. 28 Critical Values for Fisher's Exact Test App143
Table B. 29 Critical Values for Runs Test App171
Table B. 30 Critical Values of C for the Meartsquare Successive Difference Test App 180
Table B. 31 Critical Values for the Runs. Up and Down Test App182

APPENDIX B STATISTICAL TABLES AND GRAPHS (continued)

Table B. 32 Angular Deviation. s, As a Function of Vector Length, r App 184
Table B. 33 Circular Standard Deviation, so, As a Function of Vector Length, r App 186
Table B. 34 Critical Values of Rayleigh's z App188 Table B. 35 Critical Values of u for the V Test of Cixcular Uniformity App190
Table B. 36 Critical Values of m for the Hodges-Ajne Test App191

ANSWERS TO EXERCISES Ans7
LITERATURE CITED L1
INDEX It

Table B. 37 Correction Factor, K, for the Watson and Williams Test App193
Table B. 38 Critical Values of Watson's U^{2} App 195 Table B. 39 Critical Values of \boldsymbol{R}^{\prime} for the Moore Test of Circular Uniformity App198
Table B. 40 Common Logarithms of Factorials App199 Table B.A1 Ten Thousand Random Digits App201 Figure B. 1 Power and Sampie Size in Amalysis of Variance App205
would be described by the binomial distribution (sometimes referred to as the "Bernoulli distribution"*). Let us now examine binomial probabilities.

24.1 Binomial Probabilities

Consider a population consisting of two categories, where p is the proportion of individuals in one of the categories and $q=1-p$ is the proportion in the other. Then the probability of selecting at random from this population a member of the first category is p, and the probability of selecting a member of the second category is $q .{ }^{\dagger}$

For example, let us say we have a population of female and male animals, in proportions of $p=0.4$ and $q=0.6$, respectively, and we take a random sample of two individuals from the population. The probability of the first being a female is p (i.e., 0.4) and the probability of the second being a female is also p. As the probability of two mutually exclusive events both occurring is the product of the probabilities of the two separate events (Section 5.7), the probability of having two females in a sample of two is $(p)(p)=p^{2}=0.16$; the probability of the sample of two consisting of two males is $(q)(q)=q^{2}=0.36$.

What is the probability of the sample of two consisting of one male and one female? This could occur by the first individual being a fernale and the second a male (with a probability of $p q$) or by the first being a male and the second a female (which would occur with a probability of $q p$). The probability of either of two mutually exclusive outcomes is the sum of the probabilities of each outcome (Section 5.6), so the probability of one female and one male in the sample is $p q+q p=2 p q=2(0.4)(0.6)=0.48$. Note that $0.16+0.36+0.48=1.00$.

Now consider another sample from this population, one where $n=3$. The probability of all three individuals being female is $p p p=p^{3}=(0.4)^{3}=0.064$. The probability of two females and one male is $p p q$ (for a sequence of $\% \$ \delta^{\circ}$) $+p q p$ (for 여 δ) $+q p p$ (for σ 와 ㅇ), or $3 p^{2} q=3(0.4)^{2}(0.6)=0.288$. The probability of one female and two males is $p q q$ (for $q \delta \delta$) $+q p q$ (for $\delta q \delta$) $+q q p$ (for of δ) , or $3 p q^{2}=3(0.4)(0.6)^{2}=0.432$. And, finally, the probability of all three being males is $q q q=q^{3}=(0.6)^{3}=0.216$. Note that $p^{3}+3 p^{2} q+3 p q^{2}+q^{3}=$ $0.064+0.288+0.432+0.216=1.000$ (meaning that there is a 100% probability-that is, it is certain-that the three animals will be in one of these three combinations of sexes).

[^0]If we performed the same exercise with $n=4$, we would find that the probability of four females is $p^{4}=(0.4)^{4}=0.0256$, the probability of three females (and one male) is $4 p^{3} q=4(0.4)^{3}(0.6)=0.1536$, the probability of two females is $6 p^{2} q^{2}=0.3456$, the probability of one female is $4 p q^{3}=0.3456$, and the probability of no females (i.e., all four are male) is $q^{4}=0.1296$. (The sum of these five terms is 1.0000 , a good arithmetic check.)

If a random sample of size n is taken from a binomial population, then the probability of X individuals being in one category (and, therefore, $n-X$ individuals in the second category) is

$$
\begin{equation*}
P(X)=\binom{n}{X} p^{X} q^{n-X} \tag{24.1}
\end{equation*}
$$

In this equation, $p^{X} q^{n-X}$ refers to the probability of sample consisting of X items, each having a probability of p, and $n-X$ items, each with probability q. The binomial coefficient,

$$
\begin{equation*}
\binom{n}{X}=\frac{n!}{X!(n-X)!} \tag{24.2}
\end{equation*}
$$

is the number of ways X items of one kind can be arranged with $n-X$ items of a second kind, or, in other words, the number of possible combinations of n items divided into one group of X items and a second group of $n-X$ iterns. (See Section 5.3 for a discussion of combinations; Equation 5.3 explained the factorial notation, "!".) Therefore, Equation 24.1 can be written as

$$
\begin{equation*}
P(X)=\frac{n!}{X!(n-X)!} p^{X} q^{n-X} \tag{24.3}
\end{equation*}
$$

Thus, $\binom{n}{x} p^{X} q^{n-X}$ is the X th term in the expansion of $(p+q)^{n}$, and Table 24.1 shows this expansion for powers up through 6. Note that for any power, n, the sum of the two exponents in any term is n. Furthermore, the first term will always be p^{n}, the second will always contain $p^{n-1} q$, the third will always contain $p^{n-2} q^{2}$, etc.. with the last term always being q^{n}. The sum of all the terms in a binomial expansion will always be 1.0 , for $p+q=1$, and $(p+q)^{n}=1^{n}=1$.

As for the coefficients of these terms in the binomial expansion, the X th term of the nth power expansion can be calculated by Equation 24.3. Furthermore, the examination of these coefficients as shown in Table 24.2 has been deemed interesting for centuries.

TABLE 24.1 Expansion of the Binomial, $(p+q)^{n}$

n	$(p+q)^{n}$
1	$p+q$
2	$p^{2}+2 p q+q^{2}$
3	$p^{3}+3 p^{2} q+3 p q^{2}+q^{3}$
4	$p^{4}+4 p^{3} q+6 p^{2} q^{2}+4 p q^{3}+q^{4}$
5	$p^{5}+5 p^{4} q+10 p^{3} q^{2}+10 p^{2} q^{3}+5 p q^{4}+q^{5}$
6	$p^{6}+6 p^{5} q+15 p^{4} q^{2}+20 p^{3} q^{3}+15 p^{2} q^{4}+6 p q^{5}-q^{6}$

TABLE 24.2 Binomial Coefficient, $n C_{x}$

n	$X=0$	1	2	3	4	5	6	7	8	9	10	Sum of coefficients
1	1	1									$2=2^{1}$	
2	1	2	1								$4=2^{2}$	
3	1	3	3	1							$8=2^{3}$	
4	1	4	6	4	1						$16=2^{4}$	
5	1	5	10	10	5	1	1			$32=2^{9}$		
6	1	6	15	20	15	6	1		$64=2^{6}$			
7	1	7	21	35	35	21	7	1			$128=2^{7}$	
8	1	8	28	56	70	56	28	8	1		$256=2^{8}$	
9	1	9	36	84	126	126	84	36	9	1	$512=2^{9}$	
10	1	10	45	120	210	252	210	120	45	10	1	$1024=2^{10}$

This arrangement is known as Pascal's triangle.* We can see from this triangular array that any binomial coefficient is the sum of two coefficients on the line above it, namely,

$$
\begin{equation*}
\binom{n}{X}=\binom{n-1}{x-1}+\binom{n-1}{x} \tag{24.4}
\end{equation*}
$$

This can be more readily observed if we display the triangular array as follows:

Also note that the sum of all coefficients for the nth power binomial expansion is 2^{n}. Appendix Table B. $26 a$ presents binomial coefficients for much larger n 's and X 's, and they will be found useful later in this chapter.

Thus, we can calculate probabilities of category frequencies occurring in random samples from binomial population. If, for example, a sample of five (i.e., $n=5$) is taken from a population composed of 50% males and 50% females (i.e., $p=0.5$ and $q=0.5$) then Example 24.1 shows how Equation 24.3 is used to determine the probability of the sample containing 0 males, 1 male, 2 males, 3 males, 4 males, and 5 males. These

[^1]probabilities are found to be $0.03125,0.15625,0.31250,0.31250,0.15625$, and 0.03125 , respectively. This enables us to state that if we took 100 random samples of five animals each from the population, about three of the sample [i.e., $(0.03125)(100)=3.125$ of them] would be expected to contain all females, about sixteen [i.e., $(0.15625)(100)=$ 15.625] to contain one male and four females, thirty-one [i.e., $(0.31250)(100)]$ to consist of two males and three females, etc. If we took 1400 random samples of five, then $(0.03125)(1400)=43.75$ [i.e., about 44] of them would be expected to contain all females, etc. Figure 24.1a shows graphically the binomial distribution for $p=q=0.5$, for $n=5$. Note, from Fig 24.1a and Example 24.1, that when $p=q=0.5$ the distribution is symmetrical [i.e., $P(0)=P(n), P(1)=P(n-1)$, etc.], and Equation 24.3 becomes
\[

$$
\begin{equation*}
P(X)=\frac{n!}{X!(n-X)!} 0.5^{n} \tag{24.5}
\end{equation*}
$$

\]

Appendix Table B. 26 b gives binomial probabilities for $n=2$ to $n=20$, for $p=0.5$.
Example 24.2 presents the calculation of binomial probabilities for the case where $n=5, p=0.3$, and $q=1-0.3=0.7$. Thus, if one were sampling a population consisting of 30% males and 70% females, 0.16807 (i.e., 16.807%) of the samples would be expected to contain no males, 0.36015 to contain one male and four females, etc. Fig. 24.1b presents this binomial distribution graphically, whereas Fig. 24.1c shows the distribution where $p=0.1$ and $q=0.9$.

For calculating binomial probabilities for large n, it is often convenient to employ logarithms. For this reason, Appendix Table B.40, a table of logarithms of factorials, is provided. Alternatively, it is useful to note that the denominator of Equation 24.3 cancels out much of the numerator, so that it is possible to simplify the computation of $P(X)$,

EXAMPLE 24.1 Computing binomial probabilities, $P(X)$, where $n=5, p=0.5$, and $q=0.5$ (following Equation 24.3).

x	$P(X)$	
0	$\frac{5!}{0!5!}\left(0.5^{0}\right)\left(0.5^{5}\right)$	$=(1)(1.0)(0.03125)=0.03125$
1	$\frac{5!}{114!}\left(0.5^{1}\right)\left(0.5^{4}\right)$	$=(5)(0.5)(0.0625)=0.15625$
2	$\frac{5!}{2!3!}\left(0.5^{2}\right)\left(0.5^{3}\right)$	$=(10)(0.25)(0.125)=0.31250$
3	$\frac{5!}{3!2!}\left(0.5^{3}\right)\left(0.5^{2}\right)$	$=(10)(0.125)(0.25)=0.31250$
4	$\frac{5!}{4!1!}\left(0.5^{4}\right)\left(0.5^{1}\right)$	$=(5)(0.0625)(0.5)=0.15625$
5	$\frac{5!}{5!0!}\left(0.5^{5}\right)\left(0.5^{0}\right)$	$=(1)(0.03125)(1.0)=0.03125$

Figure 24.1 The binomial distribution, for $n=5$. (a) $p=q=0.5$. (b) $p=0.3$, $q=0.7$. (c) $p=0.1, q=0.9$. These graphs were drawn utilizing the proportions given by Equation 24.1.
especially in the tails of the distribution (i.e., for low X and for high X), as shown in Example 24.3. If p is very small, then the use of the Poisson distribution (Section 25.1), should be considered.*

The mean of a binomial distribution of counts X, is

$$
\begin{equation*}
\mu_{x}=n p \tag{24.6}
\end{equation*}
$$

the variance ${ }^{\dagger}$ is

$$
\begin{equation*}
\sigma_{x}^{2}=n p q \tag{24.8}
\end{equation*}
$$

and the standard deviation of X is

$$
\begin{equation*}
\sigma_{x}=\sqrt{n p q} \tag{24.9}
\end{equation*}
$$

[^2]EXAMPLE 24.2 Computing binomial probabilities, $P(X)$, where $n=5, p=0.4, q=0.7$ (following Equation 24.3).
?

| X | $P(X)$ |
| :--- | :--- | :--- |
| 0 | $\frac{5!}{0!5!}\left(0.3^{0}\right)\left(0.7^{5}\right)=(1)(1.0)(0.16807)=0.16807$ |
| 1 | $\frac{5!}{114!}\left(0.3^{1}\right)\left(0.7^{4}\right)=(5)(0.3)(0.2401)=0.36015$ |
| 2 | $\frac{5!}{213!}\left(0.3^{2}\right)\left(0.7^{3}\right)=(10)(0.09)(0.343)=0.30870$ |
| 3 | $\frac{5!}{3!2!}\left(0.3^{3}\right)\left(0.7^{2}\right)=(10)(0.027)(0.49)=0.13230$ |
| 4 | $\frac{5!}{4!1!}\left(0.3^{4}\right)\left(0.7^{1}\right)=(5)(0.0081)(0.7)=0.02835$ |
| 5 | $\frac{5!}{5!0!}\left(0.3^{5}\right)\left(0.7^{0}\right)=(1)(0.00243)(1.0)=0.00243$ |

EXAMPLE 24.3 Computing binomial probabilities, $P(X)$, with $\pi=400, p=0.02$, and $q=0.98$. (Many calculators can operate with large powers of numbers; otherwise, logarithms may be used.)

x	$P(X)$
0	$\frac{n!}{01(n-0)!} p^{0} q^{n+0}=q^{n}=0.98^{400}=0.00031$
1	$\frac{n!}{1!(n-1)!} p^{1} q^{n-1}=n p q^{n-1}=(400)(0.02)\left(0.98^{399}\right)=0.00253$
2	$\frac{n!}{2!(n-2)!} p^{2} q^{n-2}=\frac{n(n-1)}{2!} p^{2} q^{n-2}=\frac{(400)(399)}{2}\left(0.02^{2}\right)\left(0.98^{398}\right)=0.01028$
3	$\frac{n!}{3!(n-3)!} p^{3} q^{n-3}=\frac{n(n-1)(n-2)}{3!} p^{3} q^{n-3}=\frac{(400)(399)(398)}{(3)(2)}\left(0.02^{3}\right)\left(0.98^{397}\right)$
	$=0.02784$

and so on.

Thus, if we have a binomially distributed population where p (e.g., the proportion of males) $=0.5$ and q (e.g., the proportion of females) $=0.5$ and we take ten samples from that population, the mean of the ten X^{\prime} ' (i.e., the mean number of males per sample) would be expected to be $n p=(10)(0.05)=5$ and the standard deviation of the ten X^{\prime} 's would be expected to be $\sqrt{n p q}=\sqrt{(10)(0.5)(0.5)}=1.58$. Our concern typically is with the distribution of the expected probabilities rather than the expected X 's, as will be explained in Section 24.3.
24739

[^0]: *The binomial formula discussed in the following section was first described in 1676 by Sir Isaac Newton (1642-1727), the great English scientist and mathematician; and its first proof, for positive integer exponents, was given by the Swiss mathematician, Jacques (also known as Jakob or James) Bernoulli (1654-1705) in a 1713 publication (Cajori, 1954). Each observed event from a binomial distribution is sometimes called a "Bernoulli trial." David (1995) ascribes the first use of the term "binomial distribution" to G. U. Yule, in 1911.
 ${ }^{\dagger}$ This assumes "sampling with replacement." That is, each individual in the sample is taken at raudom from the population and then is returned to the population before the next member of the sample is selected. Sampling without replacement is discussed in Section 24.2 . If the population is very large compared to the size of the sample, then sampling with and without replacement are indistinguishable in practice.

[^1]: *Blaise Pascal (1623-1662), French mathematician and physicist and one of the founders of probability theory (in 1654, immediately before abandoning mathematics to become a religious recluse). He had his triangular binomial coefficient derivation published in 1665, although knowledge of the triangular properties appeats in Chinese writings ais early as 1303 (Cajori, 1954; David, 1962; Struik, 1967: 79). Pascal also invented (at age 19) a mechanical adding and subtracting machine which, though patented in 1649, proved too expensive to be practical to construct (Asimov, 1982: 130-131). His significant contributions to the study of fluid pressures have been honored by naming the international unit of pressure the pascal, which is a pressure of one newton per square meter (where a newton-narned for Sir Isaac Newton-is the unit of force representing a one-kilogram mass accelerating at the rate of one meter per second per second). Pascal is also the name given to a modern computer language. The relationship of Pascal's triangle to ${ }_{n} C_{X}$ was first published in 1685 by the English mathematician, John Wallis (1616-1703) (David, 1962: 123-124),

[^2]: *Raff (1956) and Molenaar (1969a, 1969b) discuss several approximations to the binomial distribution, including the normal and Poisson distributions.
 ${ }^{\dagger}$ A measure of syrametry (see Section 6.1) for a binomial distribution is

 $$
 \begin{equation*}
 y_{1}=\frac{q-p}{\sqrt{n p q}} \tag{24.7}
 \end{equation*}
 $$

 so le can be seen that $\gamma_{1}=0$ only when $p=q=0.05, \gamma_{1}>0$ implies a distribution skowed to the right (as in Figs. 24.1b and 24.1c) and $\gamma_{1}<0$ indicates a distribution skewed to the left.

