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Abbreviations and Symbols 

= Number of random and independent samples 

= Number of excursions from a percentile criteria in a set of n samples 

= Maximum number of permissible excursions .from a percentile criteria 

= Probability associated with a one sided hypothesis test 

= Excursion rate in tested ecosystem 

= Maximum allowed x defmed nominally by a percentile 

= Detectable threshold x (at 1-a) given n, the decision stance and the tested 
= Number bf random and independent samples 

= Probability of Type I error 

= Probability of Type I1 error 
= Confidence interval 





2. Statistical concepts 


The quality criteria developed for the Swan-Canning 
estuary are percentile criteria. Percentile (sit.) standards 
specify that quality should be no worse than a defined 
limit for more than a set percentage of time. For 
example, a 90.As criteria specifies that quality can be 
worse than a criteria value hut not for more than 10% of 
the time. The proportion of time that a tested system is 
greater than (or less than) a l i t  is known as the 
population excursion rate. For the 9 0 . ~ ~ ~  quality criteria, 
the maximum allowable excursion rate is 10% of the 
assessment period. If the rate of excursion were higher 
than 10% it would be concludedthat the tested system is 
in breach of the criteria. For a 5O1(ilc. 60%1l. and 80.~1,. 
quality criteria, the maximum allowable excursion rate 
is 50.40 and 20%, respectively. 

The period in which ecosystem quality is above or 
below a threshold level is not usually known for an 
aquatic systems. In reality the hue rate of excursion 
from a limit can never be known with absolute certainty 
-it can only be estimated using monitoring data. Even 
if data are collected specifically to identify the excur- 
sion rate from a criteria, because the estimate is based 
on a limited set of data its accuracy will always be 
uncertain. When the results of monitoring are to 
underpin management decisions it is important that 
allowances are made for sample error and the level of 
uncertainty. 

2.1 Compliance with 
percentile quality criteria 
The number of sample excursions from a criteria will 
depend on 1) the number of samples collected and 2) the 
(unknown) rate of excursion in the estuarine system. 
Assume 60 samples are collected from an estuary to test 
compliancewith a nitrate criteria of 45 pgL. If the rate 
of excursion in the estuary from 45 pg/L nitrate were 
lo%, 50% or 80% of the assessment period, the number 
of samples with more than 45 pg/L would be some- 
where around 6, 30 and 48, respectively (although the 
exact number that could be collected in each case will 

vary). 

Since the number of sample excursions reflects the rate 
of excursion, the number of excursions in a set of n 

samples can be used as the weight of evidence support- 
ing the compliance decision. For example, if sample 
error were ignored and the results of monitoring taken 
simply on face value, if more than 6 high samples were 
collected it could be concluded that the excursion rate is 
higher than 10% and therefore the quality of the tested 
estuary is worse than that specified by a 90%lk criteria. 
That is the tested system would be found to breach its 
quality condition if 7 or more samples were found to 
contain more than 45 pg/L nitrate. 

However, the actual number of high samples that are 
collected is, to some extent, a matter of chance. The 
number of excursions in 60 samples will vary from one 
trial to the next even if the excursion rate is constant If 
the excursion rate were 10%. it would not be unusual if 
only 5 high samples were collected or even as few as 4. 
Equally it would be no surprise if 7 or 8 high samples 
were to he collected in 60 samples. This random 
variation in the number of sample excursions raises the 
question: how many high samples should be allowed 
before it is concluded that the excursion rate is incon- 
sistent with that nominated by the percentile criteria7 

2.2 The probability of 
excursion 
Variation in the number of high samples found in a set 
of n samples can be predicted (Miller and ~ l l i s  1986; 
Ellis 1989). Provided samplmg is random and inde- 
pendent, the variation in sample excursions from a set of 
n samples will always follow a binomial distribution 
(regardless of the distribution of the underlying proc- 
ess). The binol~al  distribution describes the behaviour 
of any system in which there are only two possible 
outcomes (such as heads or tails, on or off, male or 
female, higher than or less than). The probability of 
getting 'e' excursions from a set of n random samples 
is: 





breach of the criteria. This error is known as a Type I1 
error (denoted as P) and is known as the "consumers" 
risk because its consequences are borne by the water 
user or receiving environment (McBride and Ellis 
2000). 






ramples may be collected and an assessor will still 
conclude compliance. But with 10 high samples of 60 
the actual excursion rate could be as high as 26.6%. 
Therefore in adopting this approach the program 
designer has accepted that quality must be worse than 
the criteria for at least 26.6% of the time before it will 
be detected. 

The blue curve in Figure 2 is the power curve for the 
precautionary fail-safe decision rule "e > 2 = breach". 
With the fail-safe approach notice that it is the Type I1 
error that is controlled at 5% for marginal breach 
(10.1% in the example) and the excursion rate where a 
is 5% is consequential. With fail-safe, if the rate of 
excursion in the tested system is 10.1% or mare it will 
be found to breach the quality criteria on 95% of 
occasions. 

The two power n w e s  illustrate the trade off that must 
be made when designing a compliance scheme in this 
case for a 9 h i ,  criteria. With the fail-safe approach 
there is an almost 95% probability of a Type I error 
when x is exactly 10%. With benefit-ofdoubt x must 
degrade some way beyond that specified by the pereen- 
tile (x%~~.) before a breach will be detected. On the other 
hand, in the attempt to detect a very small deviation 
from the nominalx%il. (fail-safe), an assessor can expect 
a high nurnber of false alarms. The relative costs of 
both approaches should be weighed carefully before 
settling on a decision stance. 

3.2 The allocation of risk 
The incidence of risk depends on the hypothesis being 
tested (McBride and Ellis 2000). If it is decided that the 
Type I error risk will be kept small (the benefit-of-doubt 
scheme), then the tested hypothesis must be one of 
compliance. When the prior assumption is compliance, 
the Type I error is the suppliers risk and the Type I1 
error risk is the consumers risk. If it is decided that the 
probability of a Type I1 error is to be controlled (fail- 
safe), the hypothesis tested will be breach. If the tested 
hypothesis is breach the incidence of risk is reversed -
the Type I error risk becomes the consumers risk and 

the Type I1 error risk is the suppliers risk (McBride and 
Ellis 2000). 

3.3 Estimating the current 
rate of excursion 
Suppose that a single sample is collected from a lake 
every week for a period of one year. Of the 52 samples 
collected in the fmt year of monitoring, 12 are found to 
contain more than 100 pg/L of nitrate nitrogen (NO,-N). 
The question is: given e = 12 from a set of 52 samples, 
what is the best estimate of the excursion rate above 100 
pg/L NO3-N in the lake? This question can be answered 
through the use of confidence intervals around propor- 
tions. A confidence interval (CI) is a range that 
contains the true rate of excursion r A 90% CI for 
example is the range in which it IS 90% certainx lies. It 
is not know where the hue x lies it is only known that it 
lies somewhere within the range. 

The low end of the CI (denoted as PI.,) is known as the 
optimistic end of the CI because it assumes that the 
number of sample excursions was higher than could be 
expected given x. To calculate PI,, a value must be 
found for x that is so low that the probability of getting 
as many as 12 high samples out of 52 is just 5% (the 
100-2a CI). The value of x that satisfies this condition 
is found through a process of trial and error. The data 
suggest the concentration of NO3-N in the lake was 
above 100 pg/L for somewhere in the vicinity of 23% of 
the year. 

To start try a value for x that is lower than the rate of 
excursion suggested by the data set. First hy say x = 

20%. From Equation (I), if x were 0.2, the p of getting 
e 2 12 is 34%. Since this is much larger than 5%, hy a 
lower x ,  this time x = 15%. Again from (I), with x = 

0.15, there is an only an 8% chance of getting e 2 12 
from 52 weekly samples. This is close but still too high 
so try x = 14%. With a system in wbichx = 14%, there 
is a 5.3 % chance of getting e 2 12 out of 52 samples. 
This is probably close enough but to be exact, if the 
concenuation of NO3-N in the samples was above 100 
pg/L for 13.9% of the year, there would be only a 





4. The confidence interval method 


Uncertainty due to sample error can be integrated into better than the quality objective, so the benefit-of-doubt 

the decision making process using the CI method (Ellis approach produces a verdict of compliance. 

1989). With the CI method, the compliance decision is 
made with reference to the location of the upper and 
lower ends of the CI relative to me quality criteria 4.1 Identifying change in 
(denoted as x-). excursion rates 

An increase in x indicates that there has been an 

Figure 4 shows how the CI method works. With Case A increase in the time that quality is worse than a crite-
and D in Figure 4 there is little doubt associated with rion. Even arelatively small change in excursion can be 
the conclusion reached - the entire C1 are above x-. used to warn a management agency of a possible 
With casds B and C, however the decision is more degradation in quality. Decreases in the proportion of 
difftcult. time (x) that a tested system is worse than a criteria 

value can be used to signal improvements towards 
meeting management objectives for degraded systems. 

The NWQMS Guidelines on Monitoring and Repoaing 
(2000 Drafc) recommend that a staged system of 
warnings be used, each stage representing an upgrade in 
the level of alert. The stages are: 1)while a test system 
is below a threshold quality no action is required; 2) 
quality equal to the threshold quality (i.e. x = XK~,~)  
results in a warning that an investigation may be 
required; and 3) quality becoming greater than the 

' 

Figure 4. Using the CI method to conclude threshold quality means that degradation is confumed 

if the x%ijehas been exceeded. The plot and the next level of investigation is necessary (there 

shows the conclusions reached for the are no recommendations for critical stages of improving 
benefit-of-doubt (BD), face-value (FV) and quality). 

fail-safe (FS) approaches (adapted from 
Ellis 1989) 

In the current format (Drafc W Q M S  2000) the staged 
system of warnings of degradation do not make allow- 

In Case B, while the data excursion rate (the diamond- ance for sampling error (i.e. they have recommended the 

shaped symbol) is below x-, the upper end of the CI face-value approach). However, the staged warning 

extends beyond it. It is therefore conceivable that system can be used with either the fail-safe or benefit- 

quality in the tested system is worse than x,. In ofdoubt approaches through the CI method. 


adopting the fail-safe position an assessor would 

conclude breach but, with the benefit-of-doubt ap- 4.1.IDetecting increases in 

proach, compliance would be concluded. excursion 


Figure 5 shows ,a time series chart showing how the CI 
With Case C, the excursion rate of the data set is above method would alert a management agency to a degrada- 
x,, and on face-value an assessor would conclude tion in quality. The example is a goxil, criteria for chl-a 
breach. However since the lower end of the CI extends concentration. The criteria value is 3.35 pg/L. There-
below x,,, it is possible that x in the tested system was fore the aim of the Swan-Caming Cleanup Program is 
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Figure 6. How the CI method can be used to 
identify the achievement of a quality objec- 
tive for a degraded system 

In the year ZOO1 the entire CI is well above the thresh- 
old at x, and remains above it until 2005. In 2005 the 
low end of the CI falls below the line at x, but most of 
the interval is still above the line. Since the hue rate of 
excursion in the tested system may reasonably be above 
the line it is concluded that the management quality 
objective has not yet been achieved Subsequently the 

CI again moves well above the linex,. 

From 2007 the excursion rate appears to be falling hut 
the decision that the management objective bas been 
met is delayed until the upper end of the CI falls below 
x,. In the example this result occurs in the year 2010. 
The rule that governs notification that the management 
program has achieved its goal is: e < 3 = management 
objective achieved. In the Figure 6 example, e < 3 was 
recorded for the first time in the year 2010. 

4.2 The threshold rate of 
excursion xt 

Once the percentile and n have been chosen, the 
location of x, (in Figures 5 and 6) depends on whether 
an assessor adopts a benefit-of-doubt or fail-safe 
approach. 

If an assessor adopts a benefit-of-doubt approach to 
decision making, x, is determined by the requirement to 
control the Type I error. For n = 60 and a 90sik criteria, 
the benefit-of-doubt decision rule is: "e> 10 =breachw. 
With this compliance there is a 95% chance that a 
marginal breach would not be detected. Remember, that 
the chance of a Type I1 error falls to 5% only if x is at 
least 26.6% (Figure 2). The smallest rate of excursion 
(xJ that can be detected with 95% certainty with the 
compliance rule "e> 10 =breachu is 26.6%. Therefore 
for this example the threshold excursion rate x, would 
be 26.6%. The issue of a Level 3 warning would be 
made with reference to the lower end of the CI and the 
x, threshold defined by the Level 2 waming (Figure 5). 

If the fail-safe position is adopted in detecting degrada- 
tion, the location x, is determined by the requirement to 
control the Type I1 error (usually 5%) using the fail-safe 
compliance ~ l e ,  which is "e > 2 = breach" for a 90.~1, 
criteria and n = 60. With this scheme the threshold x, 
would be 10.1% (Figure 2). 

The situation for when the tested hypothesis posits 
breach (and not compliance) is depicted in Figure 6. 
With breach as the a priori position the allocation of nsk 
is reversed - the supplier's risk is the Type I1 error 
probability (McBride and Ellis 1989). This means that 
the decision that the management objective is achieved 
will be made with reference to the threshold at p = 5% 
at marginal breach. As Figure 2 shows this is "e 5 2 = 

compliance" andx, is located at 10.1%. 





Table 2. Quality criteria for total nitrogen (TN), total phosphorous (TP), chlorophyll-a (chl-a) 
and dissolved oxygen (DO) for the Swan-Canning estuary 

Estuary Compliance Depth Variable Criteria xgllla x, Currentx 
Region (% (90% CI) 

time) 
Swan L S TN (pglL) 509.0 10 10.1 4 -10 
Swan M S TN (MIL) 790.0 10 26.6 28 -35 
Swan U S x.kQ&)1009.0 10 26.6 27-35 

Canning M S TN (pg1L) 790.0 10 26.6 27 -46 
Canning U S TN (pglL) 1330.0 10 26.6 26 -45 

Swan L S TP (pg/L) 58.0 10 10.1 4-11 
Swan M S TP (pg1L) 110.0 10 26.6 28 -35 
Swan U S ----.Is':!?. 26.6 27 -35F-~P$&~ 10 

Canning M S TP (pg1L) 190.0 10 26.6 27 -46 
Canning U S TP (bglL) 300.0 10 26.6 27 -46 

Swan L S DO (%.sat) 82.1 5 5.6 2 -5 
Swan M S DO (%sat) 75.1 5 18.8 19-25 

.- . S ..- ---- 81.2 -,,----, ---,, Swan U .-. -..-..-..- --DO (p/, sat) --- 5 18.8- 19-26 
Canning M S DO (%sat) 49.1 5 18.8 19-29 
Canning U S DO (%sat) 15.4 5 18.8 19-29 

Swan L B DO (% sat) 33.7 5 5.6 3 - 6  
Swan M B DO (%sat) 32.9 5 18.8 19-27 
Swan -U - B . % sat1 12.1 5 18.8 19-33 

Canning M B DO (%sat) 36.4 5 18.8 19-35 
Swan L S chi-a (pglL) 3.55 10 10.1 4-11 
Swan M S chl-a (pglL) 8.75 10 26.6 27 -35 
Swan U s 10 26.6 28 -36ch'-a1w!L1 .--a l.~.l..lll.~~~.l98.--.-.-.-.-..-~.lll.~" 

Canning M S chl-a (pg1L) 11.67 10 26.6 30 -49 

Canning U S chl-a (pglL) 39.00 10 26.6 28 -47 


* L =Lower estuary, M = Middle estuary, U =Upper estuary 

** Current rate of excursion in the estuary basins estimated from monitroing data 1996- 1998 





Table 3. Chlorophyll-a concentration (pg/L) and oxygen (% saturation) in surface waters of 
the lower Swan-Canning and upper Canning estuary, respectively. Data were collected 
weekly between January and May 1996 to 1998. The table contains only the 59 highest 
ranked chlorophyll-a values of the 192 samples collected from the lower Swan-Canning, and 
the 62 lowest ranked dissolved oxygen measurements from the 163 samples collected in the 
upper Canning. 

numbersThe 
affects the ranks of subsequent numbers. For example, in a list of integers, if the number 10 appears Mice and has a 
rank of 5, then 11 would have a rank a€ 7 (no number would have a rankof 6) 

Chlorophyll in the lower Swan Oxygen in the upper Canning 

estuaryestuary 
Rank' Value 

1 16.00 

1 16.00 

3 7.20 

4 5.60 

4 5.60 

6 5.20 

7 4.70 

8 4.40 

9 4.30 

10 3.90 

11 3.60 

12 3.70 

(3 3.60 

rn Em 
rn 

15 3.50 

17 3.40 

17 3.40 

17 3.40 

17 3.40 

17 3.40 

17 3.40 

23 3.30 

23 3.30 

25 3.20 

25 3.20 

27 3.10 

27 3.10 

27 3.10 

27 3.10 

27 3.10 

Rank' Value 

1 1.70 

2 2.10 

3 2.40 

4 2.50 

5 2.70 

6 3.60 

6 3.60 

6 3.60 

9 3.70 

10 3.90 

10 3.90 

12 4.00 

12 4.00 

14 4.20 

14 

Rank Value 

32 3.00 

32 3.00 

34 2.90 

34 2.90 

34 2.90 

37 2.60 

37 2.60 

37 2.80 

37 2.60 

41 2.70 

41 2.70 

A1 2.70 

41 2.70 

45 2.60 

45 2.60 

45 2.60 

45 2.60 

45 2.60 

50 2.50 

50 2.50 

50 2.50 

50 2.50 

54 2.40 

55 2.30 

55 2.30 

55 2.30 

55 2.30 

59 2.20 

59 2.20 

59 2.20 

1 59 2.20 

Rank Value 

32 12.40 

33 12.60 

' 34 13.10 

35 13.20 

36 13.30 

36 13.30 

38 13.50 

39 14.40 

40 14.50 

mN 
42 15.60 

43 15.70 

44 16.40 

45 17.60 

18.30 

ranking method used here gives duplicate numbers the 

16 4.40 1 :: 18.80 

17 4.50 

18 4.70 

19 4.90 

20 5.00 

21 5.10 

22 6.10 

23 8.30 

24 8.90 

25 9.10 

26 9.30 

27 10.00 

28 10.20 

29 11.30 

30 11.70 

48 19.00 

49 20.00 

50 20.80 

51 21.60 

52 22.50 

53 22.60 

54 23.60 

55 24.90 

56 25.40 

57 25.60 

58 26.70 

59 27.40 

60 27.60 

61 26.40 

31 11.60 / 62 30.80 

same rank. However, the presence of duplicate 





estuary. From Table 2, the 41' ranked DO saturation 
value is 15.4 (%sat). This criterion is a provisional 
quality objective for the Swan-Canning Cleanup 

LEVEL 
1 

program indicating only that the frequency of occur-
r a c e  of very low DO during the assessment period has 

If more than 1 of 60 measurements of DO 
are below 15.4% saturation. 

decreased. LEVEL 
2 

5.3.3The decision.rule If less than 2 of 60 measurements of DO 

The lule that signals the achievement of the quality are below 15.4% saturation. 

objective for DO in the upper Canning is: 
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as a consequence of controlling the Type I error. For 
the chl-a example, the decision threshold is 26.6%. The 
power curve for the rule e > 10 = 'breach' also defines 
the decision threshold (the line x, in Figure 9) to upgrade 
the level of protection or surveillance. In the example, 
the decision to upgrade the level of warning of degrada- 
tion is made with reference to the location of the lower 
end of the CI (PI,) compared to x, at 26.6%. For the 
example depicted, PI, will be to the right of x, when e = 

23 of n = 60. 

If the fail-safe position had been adopted, the P error 
risk would have been controlled at 5% and the decision 
threshold in Plot A (the red line) would have been at 
10.1% and not 26.6%. The tint decision "warning, an 
investigation may be necessary" would be made when e 
> 2, and the second decision to upgrade the response to 
"next level of investigation" when e > 10. The quality 
criteria would have been selected so that the upper end 
of the CI was below 1.4%, where a = 0.05 for the "e>2 
=breachn mle (see Figure 2). 

Arranging breach 

Plot B in Figure 9 shows the situation when the tested 
hypothesis is breach. The example is for DO in the 
upper basin of the Canning estuary. This criteria 
establishes a condition on the 5nil. oxygen saturation 
(DO stresses ecosystems at low levels). Since in this 
case the tested hypothesis posits breach, the Type I1 
error is controlled to a maximum of 5% and the rate of 
excursion at a = 5% is consequential. Note also that 
with a 'breach' hypothesis the incidence of risk switches 
so that the Type I1 error is now the suppliers risk. 

To arrange it so that the Type I1 error rate is 
truly 5% at most, a quality criteria was se-
lected so that current rate of excursion was to 
the right of the threshold Iine at 18.8% (for the 
decision rule "e> 6 = breach"). The decision 
rule that restricts p = 5% is 'e < 2 = compli-
ance'. This rule places x, at 7.7% (Figure 9). 
If e = 1 from n = 60, phIghof x is 7.6% and it 
will be concluded (with 95% confidence) that 
the tested system is no longer in breach and 
that there hes been an improvement in quality 
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A Brief Overview of Statistics 

4 
Statistics is the science used to infer trukif about the real world " 
using only limited numb be used to make 
accurate decisions und 
collection of &possible measurements in space and time from an 
object or objects of interest is called thepopulation. Rarely can all 
measurements from a population be taken, however. Population 
size may be finite, but more often it is too large to measure in its 
entirety. 

An example of a population is the concentrations of dissolved 
oxygen at all points in the lower San Joaquin River over a two year 
period. An investigator researching the health of the River cannot 
possibly know oxygen concentrations at all points in the water 
body. Instead, she would commonly rely on samples of oxygen 
concentrations taken appropriately and in suitable numbers from 
various points and at various times in the River. Statistical 
analysis could then be used to relate sample findings to conditions 
in the population as a whole. 

Statistics is sed in probability theory. Both are rational, 
quantitative disciplines based on logic, numeric evaluation, and 
mathematics. Probability at its simplest is concerned with the 
likelihood of a particular event occurring. The chance of such an - event occurring ranges from zero (0%; there is no chance the event 
will occur), to one (100%; the event will definitely occur).' 

n 7 Po~ulation Parameters 

To choose the right statistical tests in order to reach valid 
conclusions, researchers need to first establish certain 
characteristics of the population in question. Populations are 
frequently characterized by their central tendency and by their 
frequency distribution around some central point. Various 
parameters (numeric values) are used to determine these 
characteristics; familiar parameters associated with central 

/Y' I 0-
For example, the likelihood ofrolling a "1"is one out of six or 116 (a~proximately 0.16667, or 17%). for a fair die .. 

The probability ofrolling six "1's" in arow, one after the other, is 116 x 116 x 116x 116x 116 x 116 (= [1/6]6), or 1146,656 

(0 .00214%+n extremely unlikely event. On the otherhand, the likelihood ofrollingcithera "I," a'2,"a"3," a "4," a "5," or a 

"6"is 116 +I16 +I16 +I16 +I16 +1/6= 1 (100%. a certainty). 

-&The probability of independent events can be calculated by multiplying their 

individual probabilities. However, the total likelihood of all muhlally exclusive possible results from ta!4ng a single action is 

determined by adding the individual probabilities, which if all possible events are accounted for should add to one (100%). Along 

with mathematics, probability theory f o m  the basis for calculating statistical distributions and associated tests. 



tendency include the range, mean, variance, and standard deviation 
of the population. Although these values are extremely helpful in 
understanding the nature of a population of measurements, they 
can seldom be known with certainty. Unless a population of 
measurements is very small, researchers cannot take all possible 
measurements necessary to determine population parameters with 
100 percent assurance. Instead, population parameters are 
estimated from samples, small subsets from the population of all 
possible measurements. The challenge then becomes how to 
sample, analyze, and interpret fmdings in order to estimate 
population parameters with reasonable assurance and to make valid 
decisions based on the population of measurements. 

Tvpes of Statistical Tests 

Statistics combines probability theory and mathematics in 
developing statistical tests intended to quantify the accuracy a d  
applicability of numeric sampled values, or data. Commonly used 
statistical tests fall into two broad categories: parametric and non- 
parametric tests. 

Parametric tests use relatively small amounts of data to calculate 
sample statistics, that are in turn estimates of true population 
parameters. In contrast, nonparametric tests often transform initial 
sample results (e.g., from raw numeric values to rankings, or from 
numeric data to nominal information) and draw conclusions about 
the population without estimating population parameters directly. 
Both types of tests offer advantages and disadvantages. To 
meaningfully compare the two types of tests various topics related 
to statistics-i.e., error rates, assumptions, distributions of data, 
and desirable attributes--must be reviewed. 

e a t i s t i c a l  Error 

Statistics is often used to bolster decision-making when conditions 
are uncertain. One common statistical procedure is hjpothesis 
testing. A researcher starts with a statement of the status quo 
called the null hypothesis. For 303(d) listingldelisting an example 
might be a mathematical expression implying that a lake's water 
quality is acceptable for a particular substance (i.e., the 
concentration of the pollutant in the lake is below the threshold 
criterion for that pollutant) and that it should therefore be 
placed on the section 303(d) list. The alternative hypothesis would 
then be that the water body is polluted by that substance (i.e., the 
criterion & exceeded some critical percentage of the time) and it 
should be listed. For statistical purposes, the two possible 



I 
hypotheses may be reversed--"the water is polluted" could be the 
null hypothesis with "the water is polluted" serving as the 
alternative hypothesis. In either case, the lake's water would be 
sampled, the samples tested for various pollutants, and the results 
compared against existing water quality objectives. Decision- 
makers could then reject the null hypothesis (whichever one is 
used), or not, depending on what the results showed. 

\ 
Critical to this process is the fact that two types of error may occur 
in hypothesis testing (see table, below). The first type of error, 
called a Type I(false positive) error, occurs when a true null 
hypothesis is erroneously rejected. If the null hypothesis is that a 
water body is not polluted, then concluding that it polluted and 
listing it when it truly is not polluted is an error of the first type. 
Suppose it is decided that a water body should be designated as 
polluted when it violates a water quality objective more than ten 
percent of the time. Suppose also that a river is actually in 
violation on the average only one percent of the time. Despite this, 
and even with adequate sampling design and laboratory analysis, 
occasionally over 10 percent of samples may exceed a criterion 
and result in a Type I error by investigators. 

Types of StatisticalError 

(With Ho=water body is meeting water quality standards) 


r H. True H. False
Decision (standards met) (standards not met) 

Reject Ho Type I (false positive) Error Correct 
(list) (list when inappropriate to) Decision 

Do not reject Ho Correct Type I1 (false negative) Error (do 
(do not list) Decision not list when appmpriateto) 

1Statisticians signify the chance of a Type I error by the Greek letter 
"alpha" (a). The value of alpha ranges from zero to 100 percent, 
and can be determined/controlled accurately for the various 
statistical tests, often because tests are designed such that the alpha 
value is pre-selected by the investigator, who then has almost 
complete control over what maximum alpha level will be tolerated. 
In addition, researchers strive through proper sample design and 
analytical procedures to keep the minimum chance of making a 
Type I error as low as possible. The likelihood of making a 
Type I error, one minus alpha (1 - a), is known as the confidence. 
The higher the confidence in a test result, and therefore the lower 
the alpha rate, the less likely a conclusion based on the sample 



results will result in a Type I error. If the initial premise to be 
tested, the null hypothesis, is that a water body is achieving water 
quality standards and should be listed, and if this premise is 
indeed true, then a statistical analysis with a low alpha rate 
(i.e., high confidence) improves the chance of correctly not listing 
the water body. 

The second type of error, a Type II (false negative) error, occurs 
when a false or untrue null hypothesis is erroneously not rejected. 
For example, if the null hypothesis is that the water is not polluted, 
then concluding that a particular water body is polluted and 
leaving it unlisted when it indeed polluted is an error of the 
second type. 

The Greek letter "beta" is used to signify the chance of making 
a Type I1 error. The chance of avoiding a Type I1error, one minus 
beta (1 - 8,is known as thepower of a test. The greater the 
power, the less the likelihood of making a Type I1 error. For 
example, if the null hypothesis is that a water body is achieving 
water quality standards and should be listed, and the water 
body happens to be impaired; statistical results with a low beta rate 
(i.e., high power value) will mean that the chance of correctly 
listing the polluted water body is high. 

As stated above, most statistical tests are designed so that alpha is 
directly included in the statistical analysis by the investigator. 
However, unlike alpha beta is not normally a user-controlled 
variable in statistical tests and associated software. Nevertheless, 
both power and confidence tend to improve (i.e., a and Pdecrease) 
with increased sample sizes. 

Statistical Test Assumptions 

Correctly applying statistical tests often requires that various 
assum~tionsof the data and data collection have been met. For 
example, many tests require that data collection (sampling) be 
randomly performed. Furthermore, sample results must often be 
independent of one another. Some tests require that 
sample data have originated from a population of normally 
distributed or continuous measurements. Some tests require that 
values be ratios or percentages. In general, statistical tests may 
function when assumptions are not met, but their results may be 
less powerful or reliable. 

i/ Distributions of Data 



When numeric information is plotted for frequency, statisticians 
fmd that data falls into discernable types of frequency 
distributions. For example, many types of unrelated data are 
normally distributed resulting in the classic bell-shaped, symmetric 
curve around a single arithmetic meanlaverage (also the median 
[frequency mid-point] and mode [highest pointlof the normal 
distribution). Many types of phenomena, but not all, when 
sampled in adequate numbers appear to originate from normally 

i distributed populations of data. Other types of distributions 
include the bivariate normal, Gaussian, hypergeometric, binomial, 
Poisson, and lognormal. Knowledge of the type of population 
distribution that sample data originate with is important, since 
statistical tests can be more reliable when applied to data from 
particular distributions. 

I Desirable Statistical Attributes 

Statistics are estimates of population parameters. A sample mean 
is an estimator for the true population mean, which by the way is 
probably unknowable. Other statistics, such as a sample median 
(the value for which 50% of sample values are below and 50% 
above), may also be estimators of a population mean. In cases 
where there is more than one choice, which statistic is most 
reliable for determining information about a population? 
According to Zar (1999), a reliable statisticlestimator is: 

unbiased. Given an infinite number of samples, the average of the 
statistic's values £rom all samples would equal the population 
parameter being estimated. 

precise. The statistic from any one sample is close to the actual 
population parameter being estimated. 

I consistent. As sample size increases, the sample statistic grows 
closer and closer to the population parameter being estimated. 

Parametric versus Non~arametric Tests 

I Parametric statistical ~rocedures result in s m l e  statistics that 

I estimate population parameters. For example, the sample mean 
may be an effective estimate of the true, but unknown, population 
mean. The range detected in a sample may reliably st&d;n for the 
true population range. Measures of variability such as sample 
variance and standard deviation may closely approximate the true 
variability around the population mean. Parametric statistical tests 
often include, or are mathematically-related to, these descriptive 



statistical characteristics (variance, standard deviation). An 
important distinction is that parametric procedures use actual 
sample data.* 

Nonparametric procedures are not based on, derived from, or 
associated with population parameters such as the mean or 
variance. They are nonetheless mathematically valid and well- 
studied. Many of the better known nonparametric tests substitute 
rank. in place of the actual sample values. The data are ranked by 
magnitude; and these numeric ranks rather than the original data 
are used within the statistical computations. 

For one nonparametric procedure, the exact binomial test, numeric 
sample data are first converted into nominal information- 
i.e., either a "yes" or "no," "on" or "off," or other form of 
dichotomous result. Counts or proportions of the two types of 
results are then compared to tallies or frequencies derived from the 
well-understood binomial distribution for the sample size in 
question and other variables. In many basic nonparametric tests, 
the original, numeric values are used in calculations. While 
this results in a loss of information, nonparametric procedures free 
the instigator from initial womes about population distributions 
and statistical assumptions. Nonparametric statistics are 
sometimes called distribution-less statistics. 

Frequently, both parametric and nonparametric tests are available 
to perform the same or similar basic analyses. In general, 
parametric tests are more powerful when the assumptions of the 
tests are met. However, when test assumptions are violated 
significantly-for example, when the distribution of sample data 
are heavily skewed as occurs when samples sizes are small--the 
inherent power of nonparametric tests does not decrease as 
significantly as with parametric tests. It can be difficult to 
determine whether parame t assumptions are being met. 
Again, nonparametric test concerns, albeit at a slight 
loss of statistical power. 

Many parametric tests also tend to be robust (i.e., retain accuracy 1
I 	 and precision) against small to moderate departures from tests 

assumptions (e.g., normality, equal variances among samples, etc.). 
But when departures are great, nonparametric tests can give more 
accurate or powerful results. Nonparametric test results are often 
easier to calculate than their parametric counterparts. Also, 
nonparametric tests often transform data (e.g., from raw numbers 

2 Sample data may be transformed in order to normalize the sample distribution of values (i.e.,make their frequencies approximate a 

normal distribution). 



to rankings, or from numeric to nominal information), therefore, 
they can perform reliably with data from various types of 
distributions. 






