Proposed Amendment to the Water Quality Control Plan - Los Angeles Region

to Incorporate the

Total Maximum Daily Load for Metals and Selenium in the Calleguas Creek, its Tributaries and Mugu Lagoon

Adopted by the California Regional Water Quality Control Board, Los Angeles Region on June 8, 2006

Amendments

Table of Contents Add:

Chapter 7. Total Maximum Daily Loads (TMDLs)

7-19 Calleguas Creek Watershed Metals and Selenium TMDL

List of Figures, Tables, and Inserts Add:

Chapter 7. Total Maximum Daily Loads (TMDLs) Tables

- 7-19 Calleguas Creek Watershed Metals and Selenium TMDL
- 7-19.1. Calleguas Creek Watershed Metals and Selenium TMDL: Elements

7-19.2. Calleguas Creek Watershed Metals and Selenium TMDL: Implementation Schedule

Chapter 7. Total Maximum Daily Loads (TMDLs) Calleguas Creek Watershed Metals and Selenium TMDL

This TMDL was adopted by:

The Regional Water Quality Control Board on June 8, 2006.

This TMDL was approved by:

The State Water Resources Control Board on [Insert date]. The Office of Administrative Law on [Insert date]. The U.S. Environmental Protection Agency on [Insert date].

The elements of the TMDL are presented in Table 7-19.1 and the Implementation Plan in Table 7-19.2

Table 7-19.1	Calleguas Creek	Watershed Metals and	Selenium TMDL: Elements
--------------	-----------------	----------------------	-------------------------

TMDL Element	Calleguas Cree	k Watershed	Metals and	Selenium TMDL
roblem	Three of fourteen rea			
tatement	including Revolon SI			
latement				
	Mugu Lagoon are ide	sinned on the	2002 Clean v	valer Act Section
	303(d) list of water-q	uality limited	segments as 11	mpaired due to
	elevated levels of me			
	which were approved			
	February 2003, requir			
	Loads (TMDLs) to es	tablish the ma	ximum amou	nt of pollutants a wat
	body can receive with	nout exceeding	, water quality	v standards. TMDLs
	for listed metals and s	selenium are p	resented herei	in in one document
	because, as a class of	compounds, th	hey possess si	milar physical and
	chemical properties th	nat influence th	heir persisten	ce. fate, and transport
	in the environment.		P	i, int, and a ampoint
umeric Targets	This TMDL establish	es four types o	f numeric tor	anta: (1) California
	Toxics Rule (40 CFR	Dort 121)	Diamitaria in	diagolas (1) <u>Camolina</u>
	TOXICS Rule (40 CFR	Fall 151) (C1	K criteria in	dissolved fraction for
	copper, nickel, and zi	nc, and in tota	l recoverable	form for mercury and
	selenium; (2) Ffish ti	ssue targets fo	r mercury; (3)) <u>B</u> bird egg targets fo
	mercury and selenium	1; and (4) S sed	liment quality	guidelines for coppe
	nickel, and zinc for 30	03(d) listed rea	aches. Attain	ment of sediment
	nickel, and zinc for 30 quality targets will be	03(d) listed rea	aches. Attaini	ment of sediment
	nickel, and zinc for 30 quality targets will be data, if available.	03(d) listed rea	aches. Attaini	ment of sediment
	quality targets will be	03(d) listed rea	aches. Attaini	ment of sediment
	quality targets will be data, if available.	03(d) listed rea	aches. Attaini	ment of sediment
	quality targets will be	03(d) listed rea	aches. Attaini	ment of sediment
	quality targets will be data, if available.	03(d) listed rea evaluated in c	aches. Attainn combination v	ment of sediment with sediment toxicity
	quality targets will be data, if available. 1.Copper Targets	03(d) listed rea evaluated in c Water Qua	aches. Attaini	sediment Target ³
	quality targets will be data, if available.	03(d) listed rea evaluated in c Water Qua	aches. Attain combination v	Sediment Target ³ (SQuiRTs, ERL)
	quality targets will be data, if available. 1.Copper Targets	Water Qua	aches. Attain combination v lity Target d Copper/L)	sediment Target ³
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon	Water Qua (ug dissolver Dry Weather CCC 3.1*WER ¹	aches. Attain combination v dity Target d Copper/L) Wet Weather	Sediment Target ³ (SQuiRTs, ERL)
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2	Water Qua (ug dissolver Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹	aches. Attains combination w ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	Water Qua (ug dissolver Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9	aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹	aches. Attains combination w ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo	Water Qua (ug dissolver Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9	aches. Attains combination v dility Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 26.3	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 NA ²
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3	aches. Attains combination v dity Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 41.6 29.8	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ²
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL	aches. Attains combination v dity Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² NA ²
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To the federal California	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxies Rule (CTR), Th	aches. Attains combination v dity Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 4.8	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² NA ²
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California T by a water-effect ratio (WER approved. To use a WER oth	Water Qua evaluated in c (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). Tr). The WER has a de er than the default of	aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 1.6 29.8 are expressed as the osse criteria include a fault value of 1.0 un 1.0, a study must be	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² copper water quality criteria a numerical threshold multiplied less a site-specific WER is conducted consistent with
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California The ya water-effect ratio (WER approved. To use a WER oth USEPA's WER guidance and USEPA's WER guidance and California The use of the second seco	Water Qua evaluated in c water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). Th WER Rule a de er than the default of adopted by the Regi	aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 26.3 4.8*WER ¹ 1.6 29.8 are expressed as the toose criteria include a fault value of 1.0 un fault value of 1.0 un fault value of 1.0 un fault value of 1.0 un to a study must be onal Board through	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² copper water quality criteria a numerical threshold multiplies less a site-specific WER is conducted consistent with the state's basin plan amendmed
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California To by a water-effect ratio (WER approved. To use a WER oth USEPA's WER guidance and process. A WER study for M	Water Qua evaluated in c water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxies Rule (CTR). Th b. The WER has a de er than the default of adopted by the Regi ugu Lagoon (Reach 1	aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 41.6 29.8 are expressed as the lose criteria include a fault value of 1.0 un 1.0, a study must be onal Board through), lower Calleguas C	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² copper water quality criteria a numerical threshold multiplied less a site-specific WER is conducted consistent with the state's basin plan amendment reek (Reach 2), Revolon Sloug
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California T by a water-effect ratio (WER approved. To use a WER oth USEPA's WER guidance and process. A WER study for M (Reach 4) and Beardsley Was	Water Qua evaluated in c water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxies Rule (CTR). Th 27.9 29.3 copper in the TMDL oxies Rule (CTR). Th be WER has a de or than the default of 1 adopted by the Regi ugu Lagoon (Reach 1 th (Reach 5) has been	aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 41.6 29.8 are expressed as the loss criteria include a fault value of 1.0 un 1.0, a study must be onal Board through), lower Calleguas C submitted to the Re	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² copper water quality criteria a numerical threshold multiplied less a site-specific WER is conducted consistent with the state's basin plan amendment reek (Reach 2), Revolon Sloug gional Board. If the Regional
	quality targets will be data, if available. 1.Copper Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas The water quality targets for from the federal California T by a water-effect ratio (WER approved. To use a WER oth USEPA's WER guidance and process. A WER study for M (Reach 4) and Beardsley Was	Water Qua (ug dissolved Dry Weather CCC 3.1*WER ¹ 3.1*WER ¹ 25.9 3.1*WER ¹ 27.9 29.3 copper in the TMDL oxics Rule (CTR). Th). The WER has a de er than the default of h dopted by the Regi ugu Lagoon (Reach 1 th (Reach 5) has been than the default of h adopted by the Regi ugu Lagoon (Reach 1 th (Reach 5) has been der than the default of h depted by the Regi	Aches. Attains combination v ality Target d Copper/L) Wet Weather CMC 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 4.8*WER ¹ 26.3 4.8*WER ¹ 41.6 29.8 are expressed as the ose criteria include a fault value of 1.0 un 1.0, a study must be onal Board through 1), lower Calleguas C submitted to the Re hese waterbodies, th ments and implement	Sediment Target ³ (SQuiRTs, ERL) (ppb) 34000 34000 NA ² NA ² NA ² NA ² NA ² NA ² copper water quality criteria a numerical threshold multiplies less a site-specific WER is conducted consistent with the state's basin plan amendment creek (Reach 2), Revolon Sloug gional Board. If the Regional e TMDL targets will be modifie

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDI ² – Sediment targets were not selected as alternative target for this reach as it is not on the 303(d)						
	³ -Sediment targets are based of	on screening le eir Screening C	vels end Juick R	lorsed by the Nationa eference Tables (SQu	s it is not on the 303(d) list. Il Oceanic and Atmospheric diRTs) (Buchman, 1999) foot no		
	2-Mercury Targets				x		
	Media			Та	irget		
	Fish Tissue (Human He	alth)	0.3 m	g methylmercury			
	Fish Tissue (Wildlife)						
	* Trophic Level (TL)	3 ¹ <50 mm	0.03 r	ng methylmercur	v/kg wet weight		
	* TL3 50-150 mm			ng methylmercur			
	* TL3 150-350 mm			g methylmercury			
	Bird Egg (Wildlife)	the set of		The second se	nercury/kg wet weight		
	Water Column		the second se	ug total mercury			
	a)Fish Tissue (Human Her b)Fish Tissue (Wildlife): ☐ Trophic Level (TL) 3 ⁴ < ☐ TL3 50-150mm: ☐ TL3 150-350mm: c)Bird Egg (Wildlife): d)Water Column Target:	50 mm: 0.0 0.1 0.1 less t	13 mg 15 mg 1 mg r 1 han 0.	methylmercury/k methylmercury/k nethylmercury/kg 5-mg-total-mercu	eg wet weight eg wet weight g wet weight		
	¹ _Tropic Level 3: Predators (e. fleas) 3.Nickel Targets Subwatershed	Wate (ug di Dry Wea CCC	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather CMC	Sediment Target ¹ (SQuiRTs, ERL) (ppb)		
	fleas) 3-Nickel Targets Subwatershed Mugu Lagoon	Wate (ug di Dry Wea CCC 8.2	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900		
	fleas) 3.Nickel Targets Subwatershed <u>Mugu Lagoon</u> Calleguas Creek 2	Wate (ug di Dry Wea CCC 8.2 8.2	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ²		
	fleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3	Wate (ug di Dry Wea CCC 8.2 8.2 149	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 856	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ²		
	fleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley	Wate (ug di Dry Wea CCC 8.2 8.2 149 8.2	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 856 74	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ²		
	fleas) 3.Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo	Wate (ug di Dry Wea CCC 8.2 8.2 149 8.2 160	r Qua ssolve ther	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 74 856 74 1292	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ² NA ²		
	fleas) 3-Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas ¹ Sediment targets are based on a Administration (NOAA) in the ² -Sediment targets were not select A study to support a select	Wate (ug di Dry Wea CCC 8.2 8.2 149 8.2 160 168 screening level cred as alternat ite specifi	r Qua ssolve ther s endor <u>vuick Re</u> ive targ	on tropic level 2 org ality Target ed Nickel/L) Wet Weather CMC 74 74 74 856 74 1292 958 sed by the National C efference Tables (SQu et for this reach as it ective (SSO) f	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² NA ² Sceanic and Atmospheric iRTs) (Buchman, 1999) is not listed on the 303(d) list.		
	fleas) 3.Nickel Targets Subwatershed Mugu Lagoon Calleguas Creek 2 Calleguas Creek 3 Revolon/Beardsley Conejo Arroyo Simi/Las Posas ¹ Sediment targets are based on Administration (NOAA) in the ² Sediment targets were not select	Wate (ug di Dry Wea CCC 8.2 8.2 149 8.2 160 168 sercening Q eted as alternat ite specifi onal Board J.S. EPA s ill consider	r Qua ssolve ther <u>s endor</u> <u>uick Re</u> ive targ c obj d and staff. er rev	on tropic level 2 org ality Target ed Nickel/L) Wet Weather <u>CMC</u> 74 74 856 74 1292 958 sed by the National C efference Tables (SQU et for this reach as it <u>ective (SSO)</u> ff is currently u If a SSO for n	Sediment Target ¹ (SQuiRTs, ERL) (ppb) 20900 NA ² NA ² NA ² NA ² NA ² NA ² NA ² Sceanic and Atmospheric iRTs) (Buchman, 1999) is not listed on the 303(d) list.		

DL Element	Caneguas Cree	k watershed	Metals and	Selenium TMI
			ality Target selenium/L)	Bird Egg
	Subwatershed	Dry Weather		
			1	(ug/g)
	Muen Legeon		CMC	6
	Mugu Lagoon	71	290	6
	Calleguas Creek 2	5	290	6
	Calleguas Creek 3	5	NA ¹	6
	Revolon/Beardsley	5	290	6
	Conejo	5	NA'	6
	Arroyo Simi/Las Posas	5	NA	6
	^T "NA" indicates that a target is r defined in the CTR.		construction as <u>occar</u>	
	5.Zinc Targets			
		Water Qua		Sediment Target
	Subwatershed	(ug dissolv	ed Zinc/L)	(SQuiRTs, ERL)
	Subwatershed	Dry Weather CCC	Wet Weather CMC	(ppb)
	Mugu Lagoon	81	90	150000
	Calleguas Creek 2	81	90	NA ²
	Calleguas Creek 3	338	214	NA ²
	Revolon/Beardsley	81	90	NA ²
	Conejo	365	324	NA ²
	Arroyo Simi/Las Posas	382	240	NA ²
1 A.A	¹ Sediment targets are based on			
an a	Administration (NOAA) in th ² Sediment targets were not sele list.	neir Screening Quick	Reference Tables (SQuiRTs) (Buchman, 1
e Analysis	Significant sources of agricultural runoff, gro mercury, open space v analyzed as a function delivered during wet v between metals and pa The source analysis in be a significant source	oundwater see was also a sign of wet and di weather for all articulate matt	epage, and PC nificant sourc ry weather. H l constituents ter. ally occurring	DTW effluent. F e. Sources were ligher loads wer , due to the asso

1

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
Linkage Analysis	Linkage between sources and instream pollutant concentrations was established through a dynamic water quality Hydrologic Simulation Program – FORTRAN (HSPF). The model output generally resulted in a conservative estimate of receiving water concentrations for metals. The model was used to calculate load reductions necessary to meet <u>the</u> <u>Numeric numeric Targetstargets</u> . The load and waste load allocations were calculated based on the load reductions required to meet the <u>numeric targets</u> . The load reductions were used to calculate the load and waste load allocations.
Waste Load Allocations	In the case of copper, nickel, and selenium, waste load allocations (WLAs) are were developed for both wet and dry-weather. The dry- weather WLAs apply to days when flows in the stream are less than the 86 th percentile flow rate for each reach. The wet-weather WLAs apply to days when flows in the stream exceed the 86 th percentile flow rate for each reach. Annual mass loads of mercury in suspended sediment were developed according to low, medium, and high annual flow categories. A margin of safety of 15% was included in the WLAs for copper and nickel.
	Publicly Owned Treatment Works (POTWs) Concentration-based and mass-based WLAs are established -for copper, and nickel, and selenium in total recoverable forms, and are applied to POTWs during both wet and dry weather. Mass-based WLAs are developed for mercury for POTWs. Zinc allocations are not set because current information indicate that numeric targets for zinc are attained. The TMDL Implementation Plan includes a task to provide State Board data to support delisting of zinc. Waste load allocations for selenium are not set for POTWs because POTWs do not discharge to reaches listed for selenium. A margin of safety of 15% was included in the WLAs for copper and nickel. Interim limits are included to allow time for dischargers to put in place implementation measures necessary to achieve final waste load allocations. The daily maximum and monthly average interim limits are set equal to the 99 th and 95 th percentile of available discharge data, respectively.
	1.Interim and Final WLAs for Total Recoverable Copper in Water Column

TMDL Element	Callegu	as Creek V	Watershe	ed Metals	and Seler	nium TMDI	S and			
	Interim			Final ¹			Interim Final ¹			
	РОТЖ	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L) ²	Monthly Average (ug/L) ²	lb/day				
	Hill Canyon WWTP	20.0	16.0	(a)	(a)	0.11*WER - 0.04				
	Simi Valley WQCP	(b)	(b)	31.0	30.5	(c)				
	Moorpark WTP	(b)	(b)	31.0	30.5	(d)				
	Camarillo WRP	57.0	20.0	(a)	(a)	0.12*WER - 0.04				
	Camrosa WRP	(b)	(b)	27.4	27.0	(d)				
	 implemented i of the final Wi concentrations 2. Concentra default transla (a) Concentration- and requireme (b) Interim limits (c) Discharges fro dry weather. I met in Arroyo (d) Discharger dou wet weather w 	n accordance wi ERs, total coppe shall not exceed tition-based target tor of 0.96 -based final limi nts, but are not c are not required m Simi Valley V Monitoring will Simi/Las Posas es not contribute	th the approve r loading shall d the performa- ts have been of ts will be incli- calculated as p because the d WQCP do not be conducted or downstream cloading during poccur. Monito	ed WERs using I not exceed cur ance standards of converted to tot uded in the perr part of the TMD ischarger is mer reach lower Ca and mass-based m reaches. Ing dry weather.	the equations a rrent loading. 1 of current treats al recoverable a nits in accorda L. eting the final 1 lleguas Creek a WLAs will be Concentration- nducted and ma	limits. and Mugu lagoon d e evaluated if target -based WLAs apply ass-based WLAs w	gardle: t uidanc luring s are n y during			

2.Interim and Final WLAs for Total Recoverable Nickel in Water Column

	Inte	rim		Final	
POTW	Daily Maximum (ug/L)	Monthly Average (ug/L)	Daily Maximum (ug/L)1	Monthly Average (ug/L)2	lb/day
Hill Canyon WWTP	8.3	6.4	(a)	(a)	0.3
Simi Valley WQCP	(b)	(b)	960.0	169.0	(c)
Moorpark WTP	(b)	(b)	960.0	169.0	(d)
Camarillo WRP	16.0	6.2	(a)	(a)	0.2
Camrosa WRP	(b)	(b)	858.0	149.0	(d)

alt translator of 0.998.

<u>Concentration-based targets have been converted to total recoverable allocations using the CTR default translator of 0.997.</u>

(a) Concentration-based final limits will be included in the permits in accordance with NPDES

TMDL Element	A DESCRIPTION OF A DESC	the second second second second	State Balling and the second second						
	Calleguas Creek Watershed Metals and Selenium TMDL								
	guidance and requirements, but are not calculated as part of the TMDL.(b) Interim limits are not required because the discharger is meeting the final limits.								
	 (b) Interim finits are not required because the discharger is meeting the final finits. (c) Discharges from Simi Valley WQCP do not reach lower Calleguas Creek and Mugu lagoon during dry weather. Monitoring will be conducted and mass-based WLAs will be evaluated if targets are 								
	dry weather. Monitoring not met in Arroyo Simi/L			As will be evaluated if targets are					
	(d) Discharger does not cont	ribute loading during	g dry weather. Con	centration-based WLAs apply					
	during wet weather when will be evaluated if target			conducted and mass-based WLAs downstream reaches					
	in of the and the second								
	A study to support a	a SSO for nicl	kel has been	submitted to the					
	Regional Board and								
	Board and U.S. EPA	A staff. If a S	SO for nicke	l is approved, the					
				inal WLAs for nickel					
	based on the approv								
	11								
	3.Interims and Fin	al WLAs for	Mercury in	Suspended Sediment:					
			-	•					
	POTW	Interim	Final						
		(lb/month)	(lb/month)						
	Hill Canyon WWTP	0.23	0.022						
	Simi Valley WQCP	0.18	0.031						
	Moorpark WTP	N/A	N/A						
	Camarillo WRP Camrosa WRP	0.03 N/A	0.015 N/A						
	Camrosa WKP								
	Westerland allegati	and for DOTU	In one board	an the median menthly					
				on the median monthly					
				rently more stringent					
				ign flow where the total					
	load in water is assu								
	Interim WLAs for <u>n</u>			-					
	concentration obser	ved in effluer	it discharge a	and multiplied by the					
		1 / 11 0	A CONTRACTOR OF THE OWNER OWNER OF THE OWNER OWNE						
	design flow, and ap	ply to all flow	conditions.						
		Interim	Final						
	design flow, and ap								
	design flow, and ap	Interim (Ib/month)	Final (Ib/month)						
	design flow, and ap POTW Hill Canyon WWTP	Interim (Ib/month) 0.23	Final (Ib/month) 0.022						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP	Interim (Ib/month) 0.23 0.18	Final (Ib/month) 0.022 0.031						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP	Interim (Ib/month) 0.23 0.18 N/A	Final (lb/month) 0.022 0.031 N/A						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP	Interim (Ib/month) 0.23 0.18 N/A 0.03	Final (lb/month) 0.022 0.031 N/A 0.015						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP	Interim (Ib/month) 0.23 0.18 N/A 0.03	Final (lb/month) 0.022 0.031 N/A 0.015						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A	gers (PSDs)					
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP Camrosa WRP	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A						
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP <u>Urban Runoff</u> Permit <u>PSDs include mMa</u>	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A tted Stormwa	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A ater Dischar	lished for copper,					
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP <u>Urban Runoff</u> Permit <u>PSDs include mMa</u> nickel, and selenium	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A tted Stormwa ass-based WL n in total reco	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A ater Dischar	lished for copper, s. Mass-based WLAs					
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP Urban Runoff Permit PSDs include mMa nickel, and selenium are developed for m	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A tted Stormwa ass-based WL n in total reco	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A ater Dischar As are estable verable form pended sedim	lished for copper, s. Mass-based WLAs nent. Interim limits are					
	design flow, and ap POTW Hill Canyon WWTP Simi Valley WQCP Moorpark WTP Camarillo WRP Camrosa WRP <u>Urban Runoff</u> Permit <u>PSDs include mMa</u> nickel, and selenium are developed for m included to allow tit	Interim (Ib/month) 0.23 0.18 N/A 0.03 N/A tted Stormwa ass-based WL n in total reco nercury in sus me for dischar	Final (Ib/month) 0.022 0.031 N/A 0.015 N/A As are-cstable verable form pended sedim rgers to put i	lished for copper, s. Mass-based WLAs					

TMDL Element	Calleg	as Creek	Waters	hed Meta	ls and S	elenium	TMDI
TUDE Exement	A Print to main the	二、三、三、四、山田、田、田、田、田、田、田、田、田、田、田、田、田、田、田、田、田、田、		and the second	the standard and	和我们, 如此有人又 一次	The address of the second the
	maximum	and mont	f avera	ge mierm		re set equ	ial to the s
·	and 95 th pe	ercentile o	I availabi	e dischar	ge data.		
	H Interim						LAs for
	Total Rec						
	Interim lin	nits and w	aste load	allocation	is are app	olied in- <u>to</u>	<u>p</u> receiving
	water.			•			
_	<u> </u>	erim Lim	its 🔄				
		Callegu	as and Cone	ejo Creek		Revolon SI	ough
	Constituents	Dry CMC	Dry CCC	Wet CMC	Dry CM	C Dry CC	C Wet CM
		(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
	Copper*	23	19	204	23	19	204
	Nickel	15	13	(a)	15	13	(a)
	Selenium	(b)	(b)	(b)	14	13	(a)
) The current loa	ads do not exce	ed the TMDL	under wet co	nditions, int	erim limits ar	e not required.
	 Selenium alloc Implementatio 						
(c		interim limits	will be evaluat	ted in consider	ation of back	ground loadin	F ng data, if avail
			for Tota	l Recover	rable Co	pper, Ni	ckel, and
	B.<u>B.</u>Fin Seleniun		for Tota	l Recover	rable Co	pper, Ni	ckel, and
			<u>for Tota</u>	l Recove	rable Co	pper, Ni	ckel, and
	<u>Seleniun</u>	<u>n</u>					ckel, and
	<u>Seleniun</u>						<u>ckel, and</u>
	<u>Seleniun</u>	<u>n</u> eather W	LAs in V	Vater Co	lumn (11	es/day)	
	<u>Seleniun</u>	<u>n</u> eather W	LAs in V as and Cone	Vater Co Djo Creek	lumn (11	volon Slou	gh
	<u>Seleniun</u> 1.Dry-W	<u>n</u> eather W	LAs in V as and Cone Average	Vater Co ejo Creek Elevated	lumn (11	volon Slou Average	gh Elevated
	<u>Seleniun</u> 1.Dry-W Flow Range	eather W Callegu Low Flow	LAs in V as and Cone Average Flow	Vater Co ejo Creek Elevated Flow	lumn (ll Re Low Flow	volon Slou Average Flow	gh Elevated Flow
	<u>Seleniun</u> 1.Dry-W	n eather W Callegu	LAs in V as and Cone Average	Vater Co ejo Creek Elevated	lumn (ll Re Low Flow	volon Slou Average	gh Elevated Flow
	<u>Seleniun</u> 1.Dry-W Flow Range Copper1	eather W Callegu Low Flow 0.04*WER 0.02	LAs in V as and Cone Average Flow 0.12*WER 0.02	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03	lumn (H Re Low Flow 0.03*WER - 0.01	volon Slou Average Flow 0.06*WER - 0.03	gh Elevated Flow 0.13*WER 0.02
	Seleniun 1.Dry-W Flow Range Copper1 (lbs/day) Nickel (lbs/day)	eather W Callegue Low Flow 0.04*WER 0.02 0.100	LAs in V as and Cone Average Flow 0.12*WER	Vater Co bjo Creek Elevated Flow 0.18*WER	lumn (ll Re Low Flow 0.03*WER	volon Slou Average Flow 0.06*WER	gh Elevated Flow 0.13*WER
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100	LAs in V as and Cone Average Flow 0.12*WER 0.02	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03	lumn (H Re Low Flow 0.03*WER - 0.01	volon Slou Average Flow 0.06*WER - 0.03	gh Elevated Flow 0.13*WER 0.02
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day)	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a)	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a)	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a)	lumn (H Re Low Flow 0.03*WER - 0.01 0.050 0.004	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003	gh Elevated Flow 0.13*WER 0.02 0.116 0.004
	Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with th	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W	lumn (II Re Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using th	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations s	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 d allocations sl et forth above.
	Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with th	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W	lumn (II Re Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using th	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations s	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 d allocations sl et forth above.
	Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final T	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with th WERs, total co	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using th shall not exce	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations seed current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (Ibs/day) Nickel (Ibs/day) Selenium (Ibs/day) If site-s be implea Regardles (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Average Flow 0.12*WER 0.02 0.120 (a) are approved rdance with the WERs, total cone ve not been do	Vater Co bjo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region the approved W opper loading eveloped for th	Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using the shall not excent is reach as it	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so to current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (lbs/day) Nickel (lbs/day) Selenium (lbs/day) -1If site-s be implement Regardlet (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Flow 0.12*WER 0.02 0.120 (a) are approved rdance with th WERs, total co ve not been do include consid	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region a approved W opper loading eveloped for the	lumn (H Re Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using th shall not exco nis reach as it watershed w	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so e equations so the current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.
	Selenium 1.Dry-W Flow Range Copper1 (lbs/day) Nickel (lbs/day) Selenium (lbs/day) -1If site-s be implement Regardlet (a) Selenium	eather W Callegue Low Flow 0.04*WER 0.02 0.100 (a) specific WERs mented in acco ss of the final V allocations ha	LAs in V as and Cone Flow 0.12*WER 0.02 0.120 (a) are approved rdance with th WERs, total co ve not been do include consid	Vater Co ejo Creek Elevated Flow 0.18*WER 0.03 0.440 (a) by the Region a approved W opper loading eveloped for the	lumn (H Re Low Flow 0.03*WER - 0.01 0.050 0.004 al Board, TM ERs using th shall not exco nis reach as it watershed w	volon Slou Average Flow 0.06*WER - 0.03 0.069 0.003 IDL waste los e equations so e equations so e equations so the current los	gh Elevated Flow 0.13*WER 0.02 0.116 0.004 ad allocations sl et forth above. ading. 303(d) list.

Constituent	Callegua	s Creek	104644666666666666666	Revolon Slou	ah
	0054*Q^2*0.03		/FR -		
(lbs/day) 0.06		2 Q - 0.17) V	(0.000)	2*Q2+0.0005*G	2)*WER
Nickel ²		5.999/4			
	14*Q^2+0.82*Q		0.027*	Q^2+0.47*Q	
(Ibs/day) 0.01 Selenium ²	14 Q 2+0.02 Q		0.027	Q-2+0.47 Q	
			0.007*	04010 4780	
(lbs/day) (a)	WED a and	dia de Desi	the second state of the se	Q^2+0.47*Q	11
 <u>And</u> Current loads of exceed loads press (a) Selenium allocati Implementation a Q: Daily storm voluti <u>H.Interim Lim</u> <u>Sediment-(Ibs/</u>) Final WLAs are Interim limits for highest annual 1 	ented in the table ons have not been etions include com ne. iits and Fin yr) e set at 80% or mercury i	ling capacity d developed for ssideration of t al WLAs reduction n suspend	this reach as i he-watershed- for Merce from-of led sedim	ther. Sum of all t is not on the 30 wide selenium in cury in Sus HSPF load ent are set of	loads canno 3(d) list. apacts. pended estimate equal to
output for the y	ears 1993-2			n Slough	
Flow Range	Interim (Ibs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)	
0-15,000 MGY	3.3	0.4	1.7	0.1	
15,000-25,000 MGY	10.5	1.6	4	0.7	
				and the second se	
Above 25,000 MGY	64.6	9.3	10.2	1.8	
Above 25,000 MGY MGY: million gallons		9.3	10.2	1.8	

TMDL Element	KUT NY	Calleguas (Creek Wa	tershed Me	etals and S	Selenium T	MDL
	Final	WLAs for	Other NP	DES Disch	argers		
	<u>rmai</u>	WLAS IUI	Other INI	DES DISCI	COP-COLS		
	I .Fina	l WLAs fo	r Total R	ecoverable	Copper, I	vickel, and	Selenium
		Сор		Nic		Seler	
	Reach	Dry Monthly	Wet Daily	Dry Monthly	Wet Daily	Dry Monthly	Wet Daily
		Everage (ug/L) ²	Maximum (ug/L) ²	Average (ug/L) ³	Maximum (ug/L) ³	Average (ug/L)	Maximum (ug/L)
	1	3.7*WER	5.8*WER	8.2	74	(b)	(b)
	2	3.7*WER	5.8*WER	8.2	74	(b)	(b)
	3	27.0 3.7*WER	27.4 5.8*WER	149 8.3	859 75	(b) 5	(b) 290
	5	3.7*WER	5.8*WER	8.3	75	5	290
	6	(a)	31.0	(a)	958	(b)	(b)
	8	(a) (a)	31.0 31.0	(a) (a)	958 958	(b) (b)	(b) (b)
	9	29.1	43.3	160	1296	(b)	(b)
	10	29.1 29.1	43.3	160	1296	(b)	(b)
	11	29.1	43.3 43.3	160 160	1296 1296	(b) (b)	(b) (b)
	13	29.1	43.3	160	1296	(b)	(b)
	<u></u> If s imple	ite-specific WEF	Rs are approved lance with the a	by the Regional l pproved WERs u	Board, TMDL v sing the equation	waste load allocat	tions shall be e. Regardless of
	the fit	nal WERs, total o	copper loading s	hall not exceed c	urrent loading.	In addition, efflu eatment technolo	ient
	² -2-C	oncentration-base	ed targets have	been converted to	total recoverab	le allocations usi	ing the CTR
	defau	It translator of 0. Concentration-bas	96 for freshwate sed targets have	er reaches and 0.8 been converted to	3 for saltwater o total recovera	reaches. ble allocations us	ing the CTR
	defau	It translator of 0.	997 for freshwa	ter reaches and 0.	99 for saltwate	r reaches. I Mugu Lagoon d	
	weath	er. Allocations a	are not required	for these reaches			
				ave not been deve ion of the waters		each as it is not o um impacts.	n the 303(d) list.
	H.Fin	al WLAs f	or Mercu	у			

TMDL Element	Callegu	as Creek	Watersh	ed Metals	and Sele	enium T	MDL		
	There is insut	fficient inf	ormation	to assign	mass base	d WLAs	to these		
	sources. The			-					
	equal to 0.05								
	water column	· • ·			-				
	organism onl		P				· · · · · ·		
Load Allocation	Mass-based le	oad alloca	tions (LA	s) for agri	culture, a	nd open s	space are		
	developed for		-						
	Open space represents background loads from ambient sources (i.e.								
	natural soil concentrations, atmospheric deposition, and natural								
	groundwater		-		-		/		
	ambient source		-		•				
	agricultural a								
	weather. The								
· ·	are less than 8	36 th percer	itile flow	rate for ea	ch reach.	The wet-	weather		
	LAs apply to								
· · · · · ·	rate for each i sediment wer								
	flow categorie								
	copper and ni		gin or sur	ory of 157	o was mo		10 1./15 101		
	copper and m	CKCI.							
	<u> I.Interims ar</u>	nd Final I	ollA heo	cations fo	r Total R	ecovera	hle		
	Copper, Nicl			cutions to	1. 1 0tul 1				
		mits are in		allow tin	ne for disc	hargers t	o put in		
		olementati							
		ns. The da							
	limits are	set equal	to the 99 ^t	^h and 95 th	percentile	e of availa	able		
	discharge	e data. Inte	erim limit	s and fina	l load allo	ocations a	re applied		
	in receivi	ng water a	it the com	pliance po	pints.				
	A. Interi	m Limits							
	Constituents		as and Cone			evolon Slou			
	Constituents	Dry CMC (ug/L)	Dry CCC (ug/L)	Wet CMC	Dry CMC	Dry CCC	Wet CMC		
	Copper*	24	19	(ug/L) 1390	(ug/L) 24	(ug/L) 19	(ug/L) 1390		
	Nickel	43	42	(a)	43	42	(a)		
	Selenium	(b)	(b)	(b)	6.7	6	(a)		
		ads do not exc							
	Implementatio	cations have no on actions inclu	des considera	tion of watershe	ed-wide seleni	um impacts.			
	(c) Attainment of available.	interim limits	will be evalua	ted in considera	ation of backgr	ound loading	data, if		
	B.<u>B.</u>Fina	al Load A	llocation						
	1			~ .					
	1.Dry W	eather LA	ls in Wat	er Colum	n (lbs/da	y)			

			Ca	lleguas Cre	ek	Re	evolon Slo	ugh
	Cons	stituent	Low Flow	Average Flow	Elevated Flow	Low Flow	Average Flow	Elevated Flow
	pper ¹	Agriculture	0.07* WER- 0.03	0.12* WER- 0.02	0.31*WER - 0.05	0.07*WER 0.03	0.14*WER- 0.07	0.35*WER 0.07
(lbs	s/day)	Open Space	0.150	0.080	0.130	0.050	0.120	0.110
Nic	kel	Agriculture	0.420	0.260	0.970	0.390	0.690	1.600
(lbs	s/day)	Open Space	0.450	0,420	0.560	0.010	0.020	0.020
	enium	Agriculture	(a)	(a)	(a)	0.008	0.007	0.018
(lbs	s/day)	Open Space pecific WERs ar	(a)	(a)	(a)	0.180	0.310	0.490
	2.We	t Weather		Vater C		paras day) Revolon Slo	ough
	matituen			*Q^2*0.01*	and the second se		3*Q^2+0.00	a subscription of the second second
Co	pper*	Agriculture		ER - 0.02	× -	WER	0 @ 210.00	(04 Q)
		Open Space		37*Q^2+0.0	0321*Q		32*Q^2+0.0	000765*Q
		Agriculture		2+0.82*Q			^2+0.47*Q	
Nic	kel**	Open Space		2+0.82*Q			^2+0.47*Q	
Cal	anium**	Agriculture	(a)			0.1*Q^2	+1.8*Q	
Sei	enium**	Open Space	(a)			0.027*C	^2+0.47*Q	
主								
	onstituen	tl		alleguas C	reek	R	evolon Slo	ugh
Co	monuon		10 0001	0.10+0.01+1			and the set of the set	
	pper ¹			Q^2*0.01*0	2 -	(0.00123	*Q^2+0.003	
Co		Agriculture	0.05)*WE	R - 0.02		(0.00123 WER	*Q^2+0.003	34*Q)*
Co (Ibs	pper ¹ s/day)	Agriculture Open Space	0.05)*WE	R - 0.02 7*Q^2+0.00		(0.00123 WER 0.000043	*Q^2+0.003	34*Q)*
Col (Ibs	pper ¹ s/day) :kel ²	Agriculture Open Space Agriculture	0.05)*WE 0.000053 0.014*Q^	R - 0.02 7*Q^2+0.00 2+0.82*Q		(0.00123 WER 0.000043 0.027*Q'	*Q^2+0.003 32*Q^2+0.00 2+0.47*Q	34*Q)*
Coj (Ibs Nic (Ibs	pper ¹ s/day) :kel ² s/day)	Agriculture Open Space Agriculture Open Space	0.05)*WE 0.000053 0.014*Q^ 0.014*Q^	R - 0.02 7*Q^2+0.00		(0.00123 WER 0.000043 0.027*Q ⁴ 0.027*Q ⁴	*Q^2+0.003 32*Q^2+0.0 2+0.47*Q 2+0.47*Q	34*Q)*
Cop (Ibs Nic (Ibs Sel (Ibs	pper ¹ s/day) kel ² s/day) enium ² s/day) If site-spec	Agriculture Open Space Agriculture Open Space Agriculture Open Space ific WERs are ap	0.05)*WE 0.000053 0.014*Q^ 0.014*Q^ (a) (a) pproved by th	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B	0321*Q oard, TMDL	(0.00123 WER 0.000043 0.027*Q' 0.027*Q' 0.1*Q^2+ 0.027*Q' load alloca	*Q^2+0.003 2*Q^2+0.0 2+0.47*Q 2+0.47*Q 1.8*Q 2+0.47*Q tions shall be	34*Q)* 00765*Q
$\begin{array}{c} Cop\\ (lbs\\ Nic\\ (lbs\\ Sel\\ (lbs\\ \overline{sel}\\ (lbs\\ \overline{sel}\\ \underline{sel}\\ $	pper ¹ s/day) s/day) enium ² s/day) If site-spec mplemente Current oads prese Selenium a Implemente -Daily stor	Agriculture Open Space Agriculture Open Space Agriculture Open Space ific WERs are ap d in accordance loads do not exc inted in the table llocations have n mation actions in	0.05)*WE 0.000053 0.014*Q^ (a) (a) (a) pproved by th with the appr eed loading c ot been devel clude conside	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B oved WERs apacity durin oped for this tration of the	0321*Q oard, TMDL using the equ ng wet weath reach as it is watershed w	(0.00123 WER 0.000043 0.027*Q' 0.1*Q^2+ 0.027*Q' load alloca lations set f er. Sum of	*Q^2+0.003 32*Q^2+0.00 *2+0.47*Q *2+0.47*Q *2+0.47*Q tions shall be orth above. all loads can 303(d) list. m impacts.	84*Q)* 00765*Q e not exceed
Cop (Ibs Nic (Ibs Sel (Ibs ¹ <u>-</u>] i i a <u>-</u> 2 - - - - - - - - - - - - - - - - - -	pper ¹ s/day) enium ² s/day) ff site-spec mplemente Current oads prese Selenium a Implemente -Daily stor	Agriculture Open Space Agriculture Open Space Agriculture Open Space ific WERs are ap d in accordance loads do not exc inted in the table llocations have n itation actions in m volume	0.05)*WE 0.000053 0.014*Q^ (a) (a) (a) pproved by th with the appr eed loading c ot been devel clude conside	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B oved WERs apacity durin oped for this tration of the Mercu	oard, TMDL using the equ ng wet weath reach as it is watershed w	(0.00123 WER 0.000043 0.027*Q' 0.1*Q^2+ 0.027*Q' load alloca lations set f er. Sum of not on the vide-seleniu	*Q^2+0.003 32*Q^2+0.00 2+0.47*Q 2+0.47*Q 1.8*Q 2+0.47*Q tions shall be orth above. all loads can 303(d) list. m impacts. 1 Sedime	00765*Q e not exceed
$\begin{array}{c} Cop\\ (lbs\\ Nic\\ (lbs\\ Sel\\ (lbs\\ \overline{sel}\\ (lbs\\ \overline{sel}\\ \underline{sel}\\ $	pper ¹ s/day) enium ² s/day) enium ² s/day) If site-spec mplemento Current oads prese Selenium a Implemento Daily stor Interin S/VII) Final	Agriculture Open Space Agriculture Open Space Agriculture Open Space ific WERs are ap ed in accordance loads do not exc inted in the table llocations have n intation actions in m volume and Fina	0.05)*WE 0.000053 0.014*Q^ 0.014*Q^ (a) (a) proved by th with the appr eed loading c ot been devel clude conside I LAs for t at 80% t	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B oved WERs apacity durin oped for this wration of the Mercu reduction	oard, TMDL using the equ g wet weath reach as it is watershed w ry in Su	(0.00123 WER 0.000043 0.027*Q' 0.027*Q' 0.1*Q^2+ 0.027*Q' load alloca lations set f er. Sum of snot on the ride seleniu	*Q^2+0.003 22*Q^2+0.00 2+0.47*Q 2+0.47*Q 1.8*Q 2+0.47*Q tions shall be orth above. all loads can 303(d) list. m impacts. d Sedimential load esti	24*Q)* 00765*Q e not exceed ent mates.
Cop (Ibs Nic (Ibs Sel (Ibs ¹ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ (a) S Q - H.	pper ¹ s/day) enium ² s/day) enium ² s/day) If site-spec mplemente Current oads prese Selenium a Implemente Daily stor Interin S/yr) Final Interin	Agriculture Open Space Agriculture Open Space Agriculture Open Space Open Space ific WERs are ag in accordance loads do not exc inted in the table llocations have n nation actions in m volume n and Fina LAs are set m limits for	0.05)*WE 0.000053 0.014*Q^ (a) (a) (a) oproved by th with the appr eed loading c ot been devel clude conside I LAs for t at 80% t	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B oved WERs apacity durin oped for this reation of the Mercu reduction 7 in suspo	oard, TMDL using the equ ig wet weath reach as it is watershed w ry in Su	(0.00123 WER 0.000043 0.027*Q' 0.1*Q^24 0.027*Q' 10ad alloca lations set f er. Sum of anot on the ride seleniu	*Q^2+0.003 32*Q^2+0.00 2+0.47*Q 2+0.47*Q 1.8*Q 2+0.47*Q tions shall bo orth above. all loads can 303(d) list. mimpacts. I Sedime load estii are set ec	e not exceed ent mates. qual to
Cop (Ibs Nic (Ibs Sel (Ibs ¹ <u>-</u>] i i a <u>-</u> 2 - - - - - - - - - - - - - - - - - -	pper ¹ s/day) enium ² s/day) ff site-spec mplemente Current oads prese Selenium a Implement -Daily stor Interin s/yr) Final Interin the hi	Agriculture Open Space Agriculture Open Space Agriculture Open Space ific WERs are ap ed in accordance loads do not exc inted in the table llocations have n intation actions in m volume and Fina	0.05)*WE 0.000053 0.014*Q^ (a) (a) (a) (a) pproved by th with the appr eed loading c ot been devel elude conside I LAs for t at 80% f mercury al load w	R - 0.02 7*Q^2+0.00 2+0.82*Q 2+0.82*Q e Regional B oved WERs apacity durin oped for this reation of the Mercu reduction y in suspo ithin eac	oard, TMDL using the equ ig wet weath reach as it is watershed w ry in Su	(0.00123 WER 0.000043 0.027*Q' 0.1*Q^24 0.027*Q' 10ad alloca lations set f er. Sum of anot on the ride seleniu	*Q^2+0.003 32*Q^2+0.00 2+0.47*Q 2+0.47*Q 1.8*Q 2+0.47*Q tions shall bo orth above. all loads can 303(d) list. mimpacts. I Sedime load estii are set ec	e not exceed ent mates. qual to

TMDL Element	Calleg	uas Cr	eek Wa	itershee	l Meta	ls and S	eleniu	m TMI	DL
			Calleguas Creek Revolon SI					n Slough	
		Agric	Agriculture Open Space		Agriculture		Open Space		
	Flow Range	Interim (lbs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)	Interim (lbs/yr)	Final (Ibs/yr)	Interim (Ibs/yr)	Final (Ibs/yr)
in the second	0-15,000 MGY1	3.9	0.5	5.5	0.7	2		2.9	0.2
Ŷ	15,000-25,000 MGY	12.6	1.9	17.6	2 .7	4.8	0.8	6.7	1.1
	Above 25,000 MGY ⁴ MGY: million p	77.5 gallons per	11.2 year.	108.4	17.9	12.2	2.2	17.1	2
Margin of Safety Future Growth	A margin of uncertainty i in the water this TMDL. assumptions ensure suffic methods em assigned to t implementat reductions fa never exceed once in three CTR. Calcu Lagoon are and Revolor which over p explicit MO uncertainty i the median fa explicit MO category, bu average cate	in the an bodies. The im made of cient pro- ployed the TMI tion of t or the or ding num e years hlations based of a Slough predicts S is also resulting flow rate S is det t still ac	halysis f Both is hplicit N during d otection in devel DL and the TMI ther sou meric ta as speci of curren n the co n (withous actual of p includ g from t ermined ccount f	that cou mplicit AOS ste levelopr under a loping th assume DL. This arces. Courget con fied in t ent loads mbined but any of concents ed for c he calcu anslator l sufficie	ld result and exp ms from nent of all cond he TMI d to rent is result alculation centrations dischat dilution rations opper a ulation of each ent to a hore con	t in targ blicit Mo n <u>1)</u> the multipl litions, a DL. Ba nain con ts in hig ion of al tions rate <u>a exceed</u> ading c rges fro provide in the L and nick of the all n flow c	ets not OS are use of e nume and <u>2)</u> c ckgrou nstant th her requilocatio her mo lance re apacity m Calle ed by the agoon. el to ac llowabl ategory he elevi- ve natu	being a included conserva- ric targe conserva- nd loads nrougho uired ns is bas re than te ference for Mu, eguas Cr dal flush A 15% count for e load b y. The 1 ated flow	chieved d for ative ets to ttive s are ut sed on the ed in the gu reek ning), or the ased on 5% w w and
ruture Growth	Ventura Cou residents wir analysis of t for the CCW According to (SCAG), gro from 1900-2 1960s. Signi near present	th a pop he 2000 /, which o the Sc owth in 2000; wi ficant p	oulation census equals outhern Ventura ith grow	of 753, data yid about 4 Califorr a County th excession grow	197 (U) elds a p 44% of nia Asso y avera eding 7 rth is ex	S Censu opulation the count ociation ged abo '0% in t	s Burea on estim ty popp of Gov ut 51% he 1920 to occur	au, 2000 nate of 3 ulation. per dec 0s, 1950 r within). GIS 334,000 ts ade s, and and

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	increase loadings as construction activities expose bare soil and increase erosion-related discharges to receiving water. However, once development has been completed the presence of impermeable land surface and landscaped areas may reduce the amount of natural soils that are eroded and carried to the stream. For copper, future growth could increase loadings from urban areas and POTWs due to increased traffic (i.e., brake pad residues), architectural copper use and corrosion of copper pipes. Selenium loading may increase if increased irrigation raises the groundwater table and increases high selenium groundwater seepage to surface waters. However, if increased growth results in increased water demand and high selenium groundwater is pumped and treated to supply this demand, the selenium could decrease.
Seasonal Variations and Critical Conditions	Seasonal variations are addressed for copper, nickel, and selenium by developing separate allocations for wet and dry weather. Critical conditions for copper, nickel, and selenium are were developed using model results to calculate the maximum observed 4-day average dry weather concentration and the associated flow condition. Wet weather, as a whole, is defined as a critical condition. For mercury, there is no indication that mercury contamination in Mugu Lagoon is consistently exacerbated at any particular time of the year. Since the potential effects of mercury are related to bioaccumulation in the food chain over a long period time, any other short term variations in concentration which might occur are not likely to cause significant impacts upon beneficial uses. Therefore, seasonal variations do not affect critical conditions for the Calleguas Creek watershed mercury TMDL.
Special Studies and Monitoring Plan	Several special studies are planned to improve understanding of key aspects related to achievement of WLAs and LAs for the Metals and Selenium TMDL
	1. Special Study #1 (Optional) – Evaluation and Initiation of Natural Sources Exclusion
	The TMDL technical report has identified ambient sources as the primary significant selenium and mercury loadings in the watershed and as potentially significant sources of copper and nickel. The portion of all ambient sources associated with open space runoff and natural groundwater seepage is accounted for in this TMDL as "background load." This special study will evaluate whether or not background loads for each constituent qualify for natural source exclusion. This study

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	will also consider whether or not any portion of the ambient source contribution for agricultural or urban runoff loads qualify for natural source exclusions and/or provide a basis for site specific objectives. The presence of natural sources makes achievement of selenium and mercury targets during all conditions unlikely. For copper, achievement of the CTR targets or the WER based targets (if approved) in Revolon Slough may not be feasible due to the magnitude of background loads. Completion of site specific objectives and/or a use attainability analysis shall be required to review any potential change to water quality objectives for these constituents. This special study will be used to develop the necessary information to revise- the water quality objectives for selenium and mercury and possibly for copper and nickel.
	2. Special Study #2 – Identification of selenium contaminated Groundwater Sources
	The purpose of this special study will be to identify groundwater with high concentrations of selenium that is either being discharged directly to the stream or used as irrigation water. The investigation will focus on areas where groundwater has a high probability of reaching the stream and identify practical actions to reduce the discharge of the groundwater to the stream. The analysis will include an assessment of the availability of alternative water supplies for irrigation water, the costs of the alternative water supplies and the costs of reducing groundwater discharges.
	3. Special Study #3– Investigation of Soil Concentrations and Identification of "Hot Spots"
	The purpose of this special study will be to identify terrestrial areas with high concentrations of metals and/or selenium, either due to anthropogenic sources or resulting from high natural concentrations in soils. Use of detailed soil maps for the watershed in combination with field survey and soil sampling may lead to identification of areas important for reducing overall loads reaching the stream. Identification of any areas with elevated soil concentrations of metals and/or selenium would create an opportunity for efficient and targeted implementation actions, such as remediation or erosion control.
	4. Special Study #4 (Optional) – Determination of Water Effect Ratio for Copper in Revolon Slough

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	The purpose of this optional special study would be to calculate a WER for copper that is specific to Revolon Slough. A WER was not previously developed for Revolon Slough because it was not listed for copper. Subsequent monitoring demonstrated that the saltwater copper CTR criterion was exceeded in the Revolon Slough. This Study would parallel the developed WER for Mugu Lagoon and Calleguas Creek. This is an optional special study to be conducted if desired by the stakeholders or determined necessary by the Executive Officer.
	5. Special Study #5 (Optional) – Determination of Site-Specific Objectives for Mercury and Selenium
	Special Study #1 will evaluate whether a natural source exclusion is appropriate for background loads of mercury and selenium or any portion of the ambient source contributions to non-background loads in the Calleguas Creek watershed. This special study will develop any SSOs deemed necessary to account for the background conditions and/or site-specific impacts of mercury and selenium (and possibly for copper and nickel) on wildlife and humans in the watershed. This is an optional special study to be conducted if desired by the stakeholders or determined necessary for establishing a natural source exclusion.
	Monitoring Plan
	The Calleguas Creek Watershed TMDL Monitoring Plan (CCWTMP) is designed to monitor and evaluate the implementation of this TMDL and refine the understanding of metal and selenium loads. CCWTMP is intended to parallel efforts of the Calleguas Creek Watershed Nutrients TMDL, Toxicity TMDL, and OC Pesticide, PCBs, and Sediment TMDL monitoring programs. The proposed CCWTMP shall be made available for public review before approval by the Executive Officer.
	The goals of the CCWTMP include: (1) to determine compliance with copper, mercury, nickel, and selenium numeric targets at receiving water monitoring stations and at POTWs discharges; (2) to determine compliance with waste load and load allocations for copper, mercury, nickel, and selenium at receiving water monitoring stations and at POTWs discharges; (3) to monitor the effect of implementation action by urbanPSDs, POTW, and agricultural dischargers, and other NPDES permittees on in-stream water and the the the CCWTMP in a manner consistent with other TMDL implementation
	plans and regulatory actions within the Calleguas Creek watershed.
	Monitoring conducted through the Conditional Waiver for Disharges

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	from Irrigated Lands (Conditional Waiver Program) may meet part of
	the needs of the CCWTMP. To the extent monitoring required by the
	Metals and Selenium TMDL Implementation Plan parallels monitoring
	required by the Conditional Waiver Program, it-monitoring shall be
	coordinated with the Conditional Waiver Program monitoring
	conducted by individuals and groups subject to the term and conditions
	of the Conditional Waiver Program.
	Monitoring will begin within one year of the offective date of the
	Monitoring will begin within one year of the effective date of the TMDL. For the first year, In-stream water column samples will be
	collected monthly for analysis of general water quality constituents
	(GWQC), copper, mercury, nickel, selenium, and zinc-for the first year.
	After the first year, the Executive Officer will review the monitoring
	report and revise the monitoring frequency as appropriate. In-stream
	water column samples will be generally be collected at the base of
	Revolon Slough and Calleguas Creek, and in Mugu Lagoon (collection
	of flow-based samples will occur above the tidal prism). Additionally,
	sediment samples will be collected semi-annually in Mugu Lagoon and
	analyzed for sediment toxicity resulting from copper, mercury, nickel,
	selenium, and zinc. At such a time as numeric targets are consistently
	met at these points, an additional site or sites will be considered for
	monitoring to ensure numeric targets are met throughout the lower
	watershed.
	Additional samples will be collected concurrently at <u>stations that are</u>
	representative <u>of agricultural and urban runoff land use stations</u> as well as at POTWs in each of the subwatersheds and analyzed for GWQCs,
	copper, mercury, nickel, selenium, and zinc. The location of these land
	use stations will be determined before initiation of the CCWTMP.
	Environmentally relevant detection limits will be used for metals and
	selenium (i.e. detection limits lower than applicable target), if available
	at a commercial laboratory.
	£84.4 1 1 1
ار میں اور ایک اور	
	Compliance sampling station locations:

	Cancgar	is creek v	vatershed Mietals	and Selenium TMDL
	Subwatershed	Station ID	Station Location	Constituent
	Mugu Lagoon	01-11-BR	11th Street Bridge	Water Column: Cu, Ni, Hg, Se, Zn Bird Egg: Hg, Se Fish Tisue: Hg, Se
				Sediment: Cu, Ni, Hg, Se, Zn
	Revolon Slough	04-WOOD	Revolon Slough East Side of Wood Road	Water Column: Cu, Ni, Hg, Se, Zn Fish Tisue: Hg, Se
		03-CAMAR	Calleguas Creek at University Drive	Water Column: Cu, Ni, Hg, Se, Zn
	Calleguas Creek	03D-CAMR	Camrosa Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
		9AD-CAMA	Camarillo Water Reclamation Plant	Water Column: Cu, Ni, Hg, Se, Zn
	Conejo Creek	10D-HILL	Hill Canyon Wastewater Treatment Plant	Water Column: Cu, Ni, Hg, Se, Zn
	may revise the through specia TMDL. In add the assumption proceed follow WER and SSC required. The implementation	se WLAs b I studies an lition, the i in that a WE ying the TM not proceed implement n actions to hed for the d, and Moon	based on additional ad/or monitoring complementation sch ER for copper and a MDL. Should adop ed, additional impleation plan includes of address these complements these complements of the second three major POTY	ditions. Vs Simi Valley WQCP,

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	has been developed for all permitted stormwater discharges, including municipal separate storm sewer systems (MS4s), Caltrans, general industrial and construction stormwater permits, and Naval Air Weapons Station Point Mugu. MS4 WLAs will be incorporated into the NPDES permit as receiving water limits measured in-stream at the base of Revolon Slough and Calleguas Creek, and in Mugu Lagoon and will be achieved through the implementation of BMPs as outlined in the implementation plan. The Regional Board will need to ensure that permit conditions are consistent with the assumptions of the WLAs. If BMPs are to be used, the Regional Board will need to detail its findings and conclusions supporting the use of BMPs in the NPDES permit fact sheets. Should federal, state, or regional guidance or practice for implementing WLAs into permits be revised, the Regional Board may reevaluated the TMDL to incorporate such guidance. The Regional Board may revise these WLAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.
	LAs will be implemented through the State's Nonpoint Source Pollution Control Program (NPSPCP) and Conditional Waiver for Discharges from Irrigated Lands adopted by the Los Angeles Regional Water Quality Control Board on November 3, 2005. Compliance with LAs will be measured in-stream at the base of Revolon Slough and Calleguas Creek and in Mugu Lagoon and will be achieved through the implementation of BMPs consistent with the NPSPCP and the Conditional Waiver Program.
	The Conditional Waiver Program requires the development of an agricultural water quality management plan (AWQMP) to address pollutants that are exceeding receiving water quality objectives as a result of agricultural discharges. Therefore, implementation of the load allocations will be through the development of an AWQMP for metals and selenium. Implementation of the load allocations will also include the coordination of BMPs being implemented under other required programs to ensure metal discharges are considered in the implementation. Additionally, agricultural dischargers will participate in educational seminars on the implementation of BMPs as required under the Conditional Waiver Program. Studies are currently being conducted to assess the extent of BMP implementation and provide.
-	conducted to assess the extent of BMP implementation and provide information on the effectiveness of BMPs for agriculture. This information will be integrated into the AWQMP that will guide the implementation of agricultural BMPs in the Calleguas Creek watershed. After implementation of these actions, compliance with the allocations and TMDL will be evaluated and the allocations reconsidered if necessary based on the special studies and monitoring plan section of

TMDL Element	Calleguas Creek Watershed Metals and Selenium TMDL
	the implementation plan
	Agricultural and urban PSDs dischargers will have a required 25%, 50% and 100% reduction in the difference between the current loadings and the load allocations at 5, 10 and 15 years after the effective date, respectively. Achievement of required reductions will be evaluated based on progress towards BMP implementation as outlined in the UWQMPs, AWQMP, Conditional Waiver Programfor Irrigated Lands, and in consideration of background loading information, if available. If the interim reductions are not met, the dischargers will submit a report to the Executive Officer detailing why the reductions were not met and the steps that will be taken to meet the required reductions.
	As shown in Table 7-19.2, implementation of LAs will be conducted over a period of time to allow for implementation of the BMPs, as well as coordination with special studies and implementation actions resulting from other TMDL Implementation Plans (Nutrient, Historic Pesticides and PCBs, Sediment, Metals, Bacteria, etc.)for the Calleguas Creek watershed. The Regional Board may revise the LAs based on the collection of additional information developed through special studies and/or monitoring conducted as part of this TMDL.

Item	Implementation Action ¹	Responsible Party	Completion Date
1	Effective date of interim Metals and Selenium TMDL waste load allocation (WLAs), and final WLAs for other NPDES permittees	POTWs, Permitted Stormwater Dischargers ² (PSD), Other NPDES Permittees	Effective date of the amendment
2	Effective date of interim Metals and Selenium TMDL load allocation (LAs)	Agricultural Dischargers	Effective date of the amendment
3a	Submit Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months after the effective date of the amendment
3b	Implement Calleguas Creek Watershed Metals and Selenium Monitoring Program	POTWs, PSD, Agricultural Dischargers	Within 3 months of Executive Officer approval of the monitoring program
3c	Re-calibrate HSPF water quality model based on first year of monitoring data	POTWs, PSD, Agricultural Dischargers	1 year after submittal of first annual monitoring report
4a	Conduct a source control study, develop and submit an Urban Water Quality Management Program (UWQMP) for copper, mercury, nickel, and selenium	MS4s	Within 2 years after the effective date of the amendment
4b	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	Caltrans	Within 2 years after the effective date of the amendment
4c	Conduct a source control study, develop and submit an UWQMP for copper, mercury, nickel, and selenium	NAWS point Mugu (US Navy)	Within 2 years after the effective date of the amendment
5	Implement UWQMP	PSD	Within 1 year of approval of UWQMP by the Executive Officer
6	Develop and submit an Agricultural Water Quality Management Program (AWQMP) as described in the Conditional Waiver Program	Agricultural Dischargers	Within 2 years after the effective date of the amendment
7	Implement AWQMP	Agricultural Dischargers	Within 1 year of approval of AWQMP by the Executive Officer
8	Develop WLAs and LAs for zinc if impairment for Mugu Lagoon is maintained on the final 2006 303(d) list	Regional Board or USEPA	Within 1 year of the final 2006 303(d) list
9	Submit progress report on salinity management plan, including status of reducing WRP effluent discharges to Conejo and Calleguas Creek reaches of the watershed	POTWs	Within 3 years after the effective date of the amendment
10	If progress report identifies the effluent discharges reduction is not progressing, develop and	POTWs	Within 4 years after the effective date of the

Table 7-19.2 Calleguas Creek Watershed Metals and Selenium TMDL: **Implementation Schedule**

¹ The Regional Board regulatory programs addressing all discharges in effect at the time this implementation task is due may contain requirements substantially similar to the requirements of these implementation tasks. If such requirements are in place in another regulatory program including other TMDLs, the Executive Officer may revise or eliminate this implementation task to coordinate this TMDL implementation plan with other regulatory programs. ² Permitted Stormwater Dischargers (PSD) include MS4s, Caltrans, the Naval Air Weapons Station at Point Mugu, and general

industrial and construction permittees.

Item	Implementation Action ¹	Responsible Party	Completion Date
	implement source control activities for copper, mercury, nickel, and selenium		amendment
11	Re-evaluation of POTW interim waste load allocations for copper, mercury, and nickel	POTWs	Within 5 years after the effective date of the amendment
12a	Evaluate the results of the OCs TMDL, Special Study – Calculation of sediment transport rates in the Calleguas Creek watershed for applicability to the metals and selenium TMDL	Agricultural Dischargers, PSD	Within 6 months of completion of the study
12Ъ	Include monitoring for copper, mercury, nickel, and selenium in the OC pesticides TMDL, special Study – Monitoring of sediment by source and land use type	Agricultural Dischargers, PSD	Within 2 years after the effective date of the amendment
12c	Expand scope of the OC Pesticide TMDL, Special Study – Examination of food webs and accumulation in the Calleguas Creek watershed to ensure protection of wildlife to include mercury	Interested parties	If necessary, prior to end of the implementation period
12d	Evaluate the results of the OC Pesticides TMDL, Special Study – Effects of BMPs on Sediment and Siltation to determine the impacts on metals and selenium	Agricultural Dischargers, PSD	Within 6 months of completion of the study
13a	Submit work plan for Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 1 year after the effective date of the amendment
14b <u>1</u> 4a13 b	Submit results of Special Study #1 (Optional) – Identification of Natural Sources Exclusion	Agricultural Dischargers, PSD	Within 3 years of approval of workplan by Executive Officer
14a	Submit work plan for Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the effective date of the amendment
14b	Submit results of Special Study #2 – Identification of selenium Contaminated Groundwater Sources	POTWs, PSD, and Agricultural Dischargers	Within 1 year of approval of workplan by Executive Officer
15a	Submit work plan for Special Study #3 – Investigation of Metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 1 year after the effective date of the amendment
. 15b	Submit results of Special Study #3 – Investigation of metals' "Hot Spot" and Natural Soil	PSD and Agricultural Discharger	Within 2 years of approval of workplan by Executive Officer
16	Special Study #4 (Optional) – Determination of WER for copper in Revolon Slough	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
17	Special Study #5 (Optional) – Determination of Site Specific Objective for Mercury and Selenium	PSD and Agricultural Dischargers	If necessary, prior to end of the implementation period
18	Evaluate effectiveness of BMPs implemented under the AWQMP and UWQMP in controlling metals and selenium discharges	PSD and Agricultural Dischargers	6 years after the effective date of the amendment
19	Evaluate the results of implementation actions 14 and 15 (Special Study #2 & #3) and implement actions identified by the studies	POTWs, PSD, and Agricultural Dischargers	Within 1 year after the completion of the studies
20	If needed, implement additional BMPs or revise existing BMPs to address any issues not covered by	Agricultural Dischargers	7 years after the effective date of the amendment

Item	Implementation Action	Responsible Party	Completion Date
	implementation efforts of related Calleguas Creek watershed TMDLs (Nutrients, Toxicity, OC Pesticides, PCBs, and Siltation) and the Conditional Waiver Program	ан 1997 - Пробенски страница 1997 - Пробенски страница	
21	Consider nickel SSO proposed by stakeholders	Regional Board	1 years after the effective date of the amendment
22	Publicly notice tentative copper water effects ratio for Regional Board consideration, if deemed appropriate based on peer review	Regional Board Staff	Within 2 months of receipt of peer review comments
23	Based on the result from items 1-23, Regional Board will consider re-evaluation of the TMDLs, WLAs, and LAs if necessary	Regional Board	2 years from submittal of information necessary for re-evaluation
24	POTWs will be required to reduce loadings by 50%, and 100% of the difference between the current loading and the WLAs at- $8-3$ and 10 years after the effective date, respectively.	POTWs	$8_{\overline{7}}$ and 10 years after the effective date of the amendment
25	Re-evaluation of Agricultural and Urban load and waste load allocations for copper, mercury, nickel, and selenium based on the evaluation of BMP effectiveness. Agricultural and urban dischargers will have a required 25%, 50%, and 100% reduction in the difference between the current loadings and the load allocations at 5, 10, and 15 years after the effective date, respectively.	Agricultural and Urban Dischargers<u>PSDs</u>	5, 10, and 15 years after the effective date of the amendment
26	Stakeholders and Regional Board staff will provide information items to the Regional Board, including: progress toward meeting TMDL load reductions, water quality data, and a summary of implementation activities completed to date	Regional Board	2 years after the effective date, and every 2 years following
27	Achievement of Final WLAs and attainment of water quality standards for copper, mercury, nickel, and selenium	POTWs	Within 10 years after the effective date of the amendment ³
28	Achievement of Final WLAs and LAs and attainment of water quality standards for copper, nickel, mercury and selenium	Agricultural Dischargers, PSD	Within 15 years after the effective date of the $amendment^3$

³ Date of achievement of WLAs and LAs based on the estimated timeframe for educational programs, special studies, and implementation of appropriate BMPs and associated monitoring. The Conditional Waiver Program will set timeframes for the BMP management plans.