Salmon life history portfolios in a regulated river

Rachel Johnson (NOAA, UC Davis) \& Anna Sturrock (UC Davis)

Collaborators

JD Wikert (US Fish \& Wildlife Service), Tim Heyne (CA Department of
Fish \& Wildlife), Stephanie Carlson (UC Berkeley), Sebastien Nussle (UC Berkeley), Joe Merz (Cramer Fish Sciences, UC Santa Cruz)

What do we already know?

1. Juvenile salmon express diverse life history strategies. Most typically leave the natal stream as early dispersing fry (Williams 2006), which we know very little about. Our data shows that all strategies are viable.

What do we already know?

1. Juvenile salmon express diverse life history strategies. Most typically leave the natal stream as early dispersing fry (Williams 2006), which we know very little about. Our data shows that all strategies are viable.

www.science.calwater.ca.gov/images/ scinews_0610_tags_04_lg.jpg

Sturrock et al. 2015, Sturrock et al. unpubl

What do we already know?

2. Flow magnitude and variance promote life history diversity (e.g. expression of early dispersing fry), and instream survival.

What do we already know?

2. Flow magnitude and flow variance promote life history diversity (e.g. expression of early dispersing fry), and instream survival.

What do we already know?

2. Flow magnitude and flow variance promote life history diversity (e.g. expression of early dispersing fry), and instream survival.
```
Fisheries Management
and Ecology
Fisheries Managemant and Enlogy, 2014
Response of juvenile Chinook salmon to managed flow: lessons learned from a population at the southern extent of their range in North America
S. C. ZEUG, K. SELLHEIM \& C. WATRY,
Cramer Fish Sciences, Auburn, CA, USA
J. D. WIKERT
U.S Fish and Wildife Service, Lodi CA, USA
```


J. MERZ

```
Cramer Fish Sciences, Auburn CA, USA
```


What do we already know?

3. Juvenile rearing flows correlate with numbers of adult returns (Sturrock et al. 2015)

Sturrock et al (2015) PLoS ONE 10(5): e0122380.
Adapted from The Bay Institute (2013) http://thebayinstitute.org/page/detail/3866 Data sources: GrandTab (CDFW), CDEC

What do we already know?

3. Juvenile rearing flows correlate with numbers of adult returns (Sturrock et al. 2015)

Sturrock et al (2015) PLoS ONE 10(5): e0122380.
Adapted from The Bay Institute (2013) http://thebayinstitute.org/page/detail/3866 Data sources: GrandTab (CDFW), CDEC

1. Juvenile outmigration (Jan-Jun)

1. Juvenile outmigration (Jan-Jun)

1. Juvenile outmigration (Jan-Jun)

2. Juvenile outmigration (Jan-Jun)

3. Juvenile outmigration (Jan-Jun)

1. Juvenile outmigration (Jan-Jun)

1. Juvenile outmigration (Jan-Jun)

1. Juvenile outmigration (Jan-sun)

1. Juvenile outmigration (Jan-sun)

1. Juvenile outmigration (Jan-Jun)

Wetter years produce more juveniles per spawner than drier years.

Lower carrying capacity and less
migration in drier years
increased density dependent mortality.

No. spawners the previous fall (thousands)

1. Juvenile outmigration (Jan-Jun)

Wetter years produce more juveniles per spawner than drier years.

Lower carrying capacity and less migration in drier years
increased density dependent mortality.

No. spawners the previous fall (thousands)
2. Who survives? (Adult returns Oct-Dec 2-4 yrs later)

2. Who survives?

2. Who survives?

UCDAVIS
 UNIVERSITY OF CALIFORNIA

LASER ABLATION MULTI COLLECTOR INDUCTIVELY COUPLED PLASMA MASS SPECTROMETER (LA-MC-ICPMS)

2. Who survives?

2. Who survives?

2. Who survives?

2. Who survives?

2. Who survives?

FRY OUTMIGRANT

2. Who survives?

SMOLT OUTMIGRANT

2. Who survives?

2. Who survives?

2. Who survives?

Environmental considerations

Reduced flow magnitude \& variance

Environmental considerations

2005 (observed vs. unimpaired flow)
1996-2014 study period

Reduced flow magnitude \& variance

Environmental considerations

Flow magnitude \& variance

DECREASED

Reduced instream carrying capacity (less habitat, warmer temps)

Fewer migration cues

Increased density dependent mortality (FEWER FISH)

Reduced life
history diversity

- Fewer migration events
- Narrower window
- Fewer rearing habitats
(LESS RESILIENT)

Environmental considerations

Flow magnitude \& variance

INCREASED

Increased instream carrying capacity (more habitat, cooler temps) More frequent migration cues

> MORE FISH
> MORE RESILIENCE (particularly when
> paired with habitat restoration)

3 KEY MESSAGES

1. While contributions vary among years, all juvenile life history strategies are viable. i.e. Life history diversity is key to resilience.
2. Early dispersers can survive, but require flow cues in Jan-March. Their survival would likely be improved with increased flow and habitat in the San Joaquin River \& south Delta.
3. Increased flow magnitude and variability increase juvenile salmon survival (abundance) and life history diversity (resilience).

Acknowledgements

George Whitman, Justin Glessner, Mike Miller (UC Davis)
Alan Hubbard (UC Berkeley)
Peter Weber (Lawrence Livermore National Laboratory)
Carl Mesick, Doug Threloff (USFWS)
USFWS Comprehensive Assessment and Monitoring Program provided the RST data. Gretchen Murphy, Crystal Sinclair, Shelly Schubert, Dom Giudice and all the scale readers and carcass survey teams at CDFW
Travis Hinkelman, Clark Watry, Steve Zeug and all the RST operators at CFS. Jason Wyman (14 Black Poppies) for his wonderful salmon graphic.

Funding was provided by the Delta Science Fellowship Program, CDFW (Water Quality, Supply, \& Infrastructure Improvement Act of 2014, CWC §79707[g]), \& USBR (Agreement R09AC20043)

