Kor, Star

8 18 18 1

FEBRUARY 1992

SPECIAL STUDY 🗠

HYDROLOGY

OFFICE REPORT

US Army Corps of Engineers Sacramento District

USCE-RTS-S-022.10

2500

<u>;</u>

DFCG-5

SECTION	<u>SUBJECT</u>	PAGE
1.	Purpose and Scope A. General B. Exclusions C. Interior Drainage D. Hydraulic Modeling E. Future Land Use F. Usage G. Levee Crown Profiles	1 1 1 1 1 1 2
2.	Results	2
3.	Study Area A. General B. Flood Characteristics C. Tidal Hydraulics	2 2 3 3
4.	Stage-Frequency Analysis A. General B. Stage Data C. Results 1. Sacramento River at Rio Vista	4 4 7 8
5.	Wind-Wave Runup A. General B. Wind Analysis	13 13 13
6.	Maximum Water-Surface Elevations	13
. 7.	Levee Crown Profiles	14
	LIST OF TABLES	
TABLE	SUBJECT	<u>PAGE</u>
1. 2. 3. 4. 5. 6. 7. 8. 9.	Sacramento-San Joaquin Delta Contributing Area Stage Recording Locations Sacramento River - Mokelumne River Peak Stages San Joaquin River Peak Stages Old River, Middle River and Grant Line Canal Peak Stages 50- and 100-year Stages Wind Wave Calculations Zero Station Index Levee Crown Survey Dates	3 5 9 10 11 12 15 16 18

i

DFCG-5

LIST OF CHARTS

SUBJECT

CHART

1. General Map and Gaging Station Locations 1A. Sacramento-San Joaquin Delta Contributing Drainage Area 2. Sacramento River at Collinsville Peak Stage-Frequency Curve 3. Sacramento River at 3-Mile Slough Peak Stage-Frequency Curve 4. Sacramento River at Rio Vista Peak Stage-Frequency Curve 5. Sacramento River at Walnut Grove Peak Stage-Frequency Curve 6. Sacramento River at Snodgrass Slough Peak Stage-Frequency Curve 7. Sacramento River at I-Street Peak Stage-Frequency Curve 8. Mokelumne River at New Hope Landing Peak Stage-Frequency Curve 9. Georgiana Slough at Mokelumne River Peak Stage-Frequency Curve 10. San Joaquin River at Antioch Peak Stage-Frequency Curve 11. San Joaquin River at 3-Mile Slough Peak Stage-Frequency Curve 12 San Joaquin River at San Andreas Landing Peak Stage-Frequency Curve 13. San Joaquin River at Venice Island Peak Stage-Frequency Curve 14. San Joaquin River at Rindge Pump Peak Stage-Frequency Curve 15. San Joaquin River at Burns Cutoff Peak Stage-Frequency Curve 16. San Joaquin River at Brandt Bridge Peak Stage-Frequency Curve 17 San Joaquin River at Mossdale Peak Stage-Frequency Curve 18. Old River at Rock Slough Peak Stage-Frequency Curve 19. Old River at Byron Tract Peak Stage-Frequency Curve 20. Old River at Clifton Court Peak Stage-Frequency Curve 21. Old River at Tracy Road Bridge Peak Stage-Frequency Curve 22. Grant Line Canal at Tracy Road Bridge Stage-Frequency Curve 23. Middle River at Bacon Island Peak Stage-Frequency Curve 24. Middle River at Borden Highway Peak Stage-Frequency Curve 25. Middle River at Mowry Bridge Peak Stage-Frequency Curve 26. Wave Runup Locations and Fetch Diagram Atlas Tract Water-Surface Elevations 26A. 27. Bacon Island Water-Surface Elevations 28. Bethel Island Water-Surface Elevations 29. **Bishop Tract Water-Surface Elevations** 30. Bouldin Island Water-Surface Elevations 31. Brack Tract Water-Surface Elevations 32. Bradford Island Water-Surface Elevations 33. Brannan Andrus Island Water-Surface Elevations 34. Byron Tract Water-Surface Elevations

ii

LIST OF CHARTS

CHART

5400

35. 36. 37. 37A.

38. 39. 40. 41.

42. 43. 44. 45. 46.

47. 48.

49. 50.

50A.

51. 52.

53. 54.

55. 56. 56A. 57. 58. 59. 59A. 60. 60A. 61. 62. 63. 64. 65. 65A. 65A. 65. 65.

SUBJECT

Canal Ranch Tract Water-Surface Elevations
Coney Island Water-Surface Elevations
Dead Horse Island Water-Surface Elevations
Drexler Tract Water-Surface Elevations
Empire Tract Water-Surface Elevations
Fabian Tract Water-Surface Elevations
Fay Island Water-Surface Elevations
Holland Tract Water-Surface Elevations
Hotchkiss Tract Water-Surface Elevations
Lower Jones Tract Water-Surface Elevations
Upper Jones Tract Water-Surface Elevations
King Island Water-Surface Elevations
Little Mandeville Tract Water-Surface Elevations
Mandeville Island Water-Surface Elevations
McCormack-Williamson Tract Water-Surface Elevations
McDonald Island Water-Surface Elevations
Medford Island Water-Surface Elevations
Mildred Island Water-Surface Elevations
New Hope Tract Water-Surface Elevations
Orwood Tract Water-Surface Elevations
Palm Tract Water-Surface Elevations
Pescadero Tract Water-Surface Elevations
Pico Naglee Tract Water-Surface Elevations
Quimby Island Water-Surface Elevations
RD17 Water-Surface Elevations
Rindge Tract Water-Surface Elevations
Rio Blanco Tract Water-Surface Elevations
Lower Roberts Island Water-Surface Elevations
Middle Roberts Island Water Surface Elevations
Upper Roberts Island Water-Surface Elevations
Sargent-Barnhart Water-Surface Elevations
Sherman Island Water-Surface Elevations
Shima Tract Water-Surface Elevations
Shin Kee Tract Water-Surface Elevations
Stark Tract Water-Surface Elevations
Staten Island Water-Surface Elevations
Stewart Tract Water-Surface Elevations
Terminous Tract Water-Surface Elevations
Twitchell Island Water-Surface Elevations

iii

LIST OF CHARTS

SUBJECT

68.	Tyler Island Water-Surface Elevations
69.	Union Island Water-Surface Elevations
69A.	Veale Tract Water-Surface Elevations
70.	Venice Island Water-Surface Elevations
71.	Victoria Island Water-Surface Elevations
71A.	Walnut Grove Water-Surface Elevations
72.	Webb Tract Water-Surface Elevations
73.	Woodward Island Water-Surface Elevations
74.	Wright-Elmwood Tract Water-Surface Elevations
75.	Levee Stationing Base Map Index
76 91.	Levee Stationing Base Maps

CHART

2010

,.....

iv

DFCG-5

1. PURPOSE AND SCOPE -

A. General - This report presents stage-frequency curves for 24 tide gage locations, wave runup data for 12 locations and 50-, 100- and 300-year maximum water-surface elevation plots around the islands in the Sacramento-San Joaquin Delta. The stage-frequency curves in this report are updates to the stage-frequency curves presented in the report entitled "Sacramento-San Joaquin Delta, California, Stage-Frequency Study, Hydrology" and dated December 1976. The stage-frequency curves in this report include stage data recorded through water year 1988.

B. Exclusions - This report does not address FEMA guidelines. The stage-frequency curves do not reflect any expected probability adjustment. The stage-frequency curves and maximum water-surface elevation plots reflect present conditions. They do not show the effects of any proposed dams, levee improvements, possible levee failures or Delta operational changes.

C. Interior Drainage - A study of interior drainage for the Delta islands was not included in the scope of this report. At this time it is not known if projects will be feasible on any of the islands. Any future levee improvement projects will address interior drainage on a case-by-case basis.

D. Delta Maximum Water-Surface Elevation Plots - The maximum water-surface elevation plots presented in this report were not developed using a hydraulic model. They were derived from the stage-frequency curves by, in most cases, straightlining between gaging stations. See page 13 for an explanation.

E. Future Conditions - The effects on the stage-frequency curves and maximum water-surface elevations due to future land development were not studied. Due to the size of the drainage area contributing flow to the Delta, it is not expected that land use changes will have an appreciable effect on the water-surface elevations in the Delta.

If future projects include levee raising or construction of new levees, then these features will have to be analyzed to determine their impacts on the water-surface elevations at adjacent locations. Possible impacts would have to be studied when a particular project is proposed.

F. Usage - The data provided in this report will be used in Phase I of the Sacramento-San Joaquin Delta Special Study. The purpose of the Special Study is to recommend islands or groups of islands for possible levee projects. The Special Study will use the maximum water-surface elevation plots to perform the following:

A. The 300-year water-surface will be used to estimate levee construction costs.

B. Determine the approximate probability of overtopping at levee low spots.C. To set stages within the islands to compute damages.

The levee construction cost information will be used as part of the benefit-cost economic analysis which will determine the feasibility of a proposed levee project.

The islands selected in Phase I will be analyzed in Phase II. Phase II will be a feasibility level study. During the Phase II study, it will be necessary to determine what effects a proposed levee project will have in the surrounding area and if any mitigation measures are necessary. The method of analyzing these effects will be determined when Phase I is completed and it is known which islands will be recommended for Phase II studies. It is possible that hydraulic modeling will be necessary.

Phase II studies should include some type of risk analysis to determine the final NED plan.

G. Levee Crown Profiles - Levee crown profiles plotted on Charts 27-74 were surveyed by the Engineering firm retained by the respective Reclamation District. Dates of the surveys are shown on Table 8. //

2. <u>RESULTS</u> - Locations of Delta gaging stations can be found on Chart 1. Stage-frequency curves are plotted on Charts 2-25. Locations where wave runup calculations were made are shown on Chart 26. Charts 27 through 74 show the 50-, 100- and 300-year maximum water-surface elevations around the Delta Islands. Charts 76 through 91 show the levee stationing around each island. Caution should be used when using the stationing on the water-surface plots since station zero on the plot is not always at the same location as station zero on the base map. Column 4 of Table 8, pages 16 and 17, lists the station on the base map that corresponds to station zero on the water-surface plots for each island. Tables 3 through 5, pages 9-11, list yearly maximum stage readings at each gage location in the Delta. Table 6, page 12, tabulates the 50- and 100-year stages. Table 7, page 15, tabulates the wind-wave calculations. The adequacy of the results of the study along with general assumptions are presented on page 7, paragraph C.

3. STUDY AREA -

A. General - The Delta, which covers more than 1,000 square miles, is in Central California. It is situated upstream of the confluence of the Sacramento and San Joaquin Rivers at the head of Suisun Bay, the most easterly extending arm of the San Francisco Bay system. In general, the Delta extends from about Sacramento on the north, to Stockton on the south, and near Pittsburg on the west. This region, which is very flat, has been reclaimed from a natural tidal area by hundreds of miles of levees along natural and manmade waterways that divide it into about 100 tracts locally know as "islands". Land elevations range from just above mean sea level to 10 feet below mean sea level. Before islands were reclaimed, much of the Delta was covered by water from the daily tide cycle. During times of high runoff from the Sacramento and San Joaquin Basins, much of the Delta would be flooded. Chart 1 is a map of the Delta region.

B. Flood Characteristics - The contributing drainage area to the Sacramento-San Joaquin Delta encompasses approximately 40,000 square miles. Chart 1A shows the

contributing drainage area and Table 1 lists the approximate drainage areas.

RIVER SYSTEM	DRAINAGE AREA (sq. mi.)
Sacramento	25,200
San Joaquin	13,500
Mokelumne	1,200

TABLE 1 SACRAMENTO-SAN JOAQUIN DELTA CONTRIBUTING AREA

Chart 1A and Table 1 show that the Sacramento-San Joaquin Delta derives its name from it's two main contributors, the Sacramento and San Joaquin Rivers. Flows in these systems come from areas that are geographically and physically different.

A review of annual maximum stages in the Delta shows that in some years the annual maximum stage at all locations will be occur during the same storm event. However, in other years, the peak stages in the northern part of the Delta occur during a different time period than those in the southern part of the Delta and vice versa. The differences are caused by the geographical distribution of the contributing drainage basin and the fluctuation of the storm track over California. If the main section of a storm system drops it's precipitation over the Sacramento River basin, the stages will be higher in the northern part of the Delta. If the main section is over the San Joaquin, then the stages will be higher in the southern part.

Also contributing to the puzzle is the tidal influence of the Pacific Ocean. The tides can have a profound effect on the stages especially in the lower and central parts of the Delta. If high tides combine with high runoff events very high stages will result.

In summary, the maximum stages result from storms of different origins which do not have the same frequency at all locations, and from tides of varying magnitudes which seldom reach their maximum stages concurrently with the peak flows.

C. Tidal Hydraulics - The normal tide cycle has two high stages and two low stages in a day. Tides follow the moon more closely than they do the sun, and the lunar or tidal day is about 50 minutes longer than the solar day. This causes the tide to occur later each day, and the tide that has occurred near the end of one calendar day will be followed by a corresponding tide that may skip the next day and occur in the early morning of the third day. Thus on certain days of each month only a single high or single low water occurs. At some stations, during portions of each month, the tide becomes diurnal, that is, only one high and one low water will occur during the period of a lunar day.

During a low flow period, tidal effects can be seen on the Sacramento River at Verona and the San Joaquin River at Mossdale. During periods of high flow, the tidal effects are dampened upstream of the delta. As the high flows enter the Delta, they are affected by the tidal cycle. The hourly gage readings in the central and lower sections of the Delta will reflect the tidal variation, even during high flow periods.

The times that high flows are concurrent with high tides in the delta is when extreme elevations occur. The incoming tide from the Pacific Ocean will have a tendency to slow down and backup the incoming high flows to the Delta. When this "stacking" occurs, especially with high wind periods, levee flood fights are a common sight.

4. STAGE-FREQUENCY ANALYSIS -

A. General - Selection of gages for analysis in this study was based primarily on availability of records. The 24 gages selected were judged to have the most suitable records and proper areal distribution in the Delta. The datum of most of the gages selected has changed one or two times during the period of record. Therefore, all of the records were adjusted to a datum of zero elevation, mean sea level (NGVD of 1929) to maintain continuity among all stations. Table 2 shows the gages analyzed.

B. Stage Data - Many stage recording gages have been installed in the Delta over the past 50-60 years. Depending on the need for information at specific sites, some gages have been short lived while others have a long record. Until 1976, stage data were published annually in the 130 Series Bulletins of the California Department of Water Resources. Since 1976, stage data are being stored by the California Department of Water Resources Central District Office, Data and Operations Branch, Sacramento, California. This agency is to be contacted for obtaining unpublished tidal records.

GAGE LOCATION	I.D NUMBER ¹	GAGE LOCATION	I.D NUMBER ¹
SACRAMENT	O RIVER	SAN JOAQUIN	N RIVER
Collinsville	B9-1110	Antioch	B9-5020
Three-Mile Slough	B9-1160	Three-Mile Slough	B9-5060
Rio Vista	B9-1210	San Andreas Landing	B9-5100
Walnut Grove	B9-1650	Venice Island	B9-5580
Snodgrass Slough	B9-1750	Rindge Pump	B9-5620
I Street Bridge	AO-2100	Burns Cutoff	B9-5660
OLD RIV	ER	Brandt Bridge	B9-5740
Rock Slough	B9-5180	Mossdale Bridge	B9-5820
Byron Tract	B9-5270	MIDDLE RI	VER
Clifton Court Ferry	B9-5340	Bacon Island	B9-5460
Tracy Road Bridge	B9-5380	Borden Highway	B9-5500
OTHER STA	TIONS	Mowry Bridge	B9-5540
Grant Line Canal at Tracy Road Bridge	B9-5300		
S.F Mokelumne River at New Hope Bridge	B9-5140		
Georgiana Slough at Mokelumne River	B9-4100		

TABLE 2 STAGE RECORDING LOCATIONS

1 I.D. Number - Station Identification number used in the Department of Water Resources Series 130 Bulletins.

1.1.1.1.1.1.1.1

The many factors influencing stages in the Delta include tides, inflow from Central Valley streams, and high winds. Barometric pressure, land subsidence, recorder malfunction, vandalism, and other miscellaneous factors also may influence readings from continuously recording stage gages. Stage data known to be erroneous due to gage malfunction or some other cause are adjusted prior to their publication.

Land subsidence, which is constantly occurring in the Delta, results in erroneously high readings. Bench marks throughout the Delta are periodically resurveyed to correct for land subsidence. When a bench mark is updated, the tide gage datum is resurveyed and updated by the agency maintaining the gage. Department of Water Resources and Corps of Engineers tide gages were updated in 1976. Currently, the Delta area is in the process of being included in the Global Positioning System (GPS). This system, using data from satellites, will tie the benchmarks in the Delta to those in the more geologically stable foothill areas in order to access subsidence in the Delta and adjust the benchmarks to correct for subsidence.

Tables 3 through 5 summarize the higher-high stage data, adjusted to mean sea level, that have been recorded at the stations listed in Table 2. The period of 1945-1988 was selected for analysis. This period covers the maximum length of record for most stations, coincides with the post Shasta era and the hydraulics of the Delta have not significantly changed during this period. Operation of the major storage projects in the Sacramento River Basin is coordinated with operation of Shasta Dam to maintain, as much as possible, decreed water quality standards near Antioch.

Stage data for each station were compared with data from neighboring stations and, when necessary, adjusted to obtain consistency. These data were plotted using weibull plotting positions. The weibull equation is shown below.

$$P = \frac{M}{N+1}$$

Where: P=Plotting Position M=Order of sequence with 1 being largest N=Number of items in data set

Curves were then drawn graphically to fit the data. The curves are shown on Charts 2 through 25. Once the curves were drawn they were reviewed as a group and adjusted, if necessary, to maintain consistency. This review showed:

1. The statistical parameters were inconsistent from gage to gage along the same river.

2. The computed frequency curves do not reflect inundation of large areas from levee

failures. The curves were smoothed to remove any localized effects of a levee failure.

3. The maximum elevation on a stage-frequency curve does not exceed the height of the levee crowns at that location. The curves are drawn solid up to the 100-year level. This reflects the reliability of the gaged data. Above the 100-year elevation, the stage-frequency curves are dashed. The curves are dashed above the 100-year level due to the many uncertainties that can occur at the higher frequencies. No stations have a period of record long enough to have actual data that would have a plotting position rarer than the 100-year event. Therefore, in order to estimate elevations of frequencies greater than the 100-year, the curves are extrapolated based on judgement and the shape of the curve below the 100-year. The height of the adjacent levee crown is also taken into account. The stage-frequency curves do not exceed the height of the adjacent levee crown.

C. Results - The 50- and 100-year higher-high stages at the 24 stations used in the analysis are shown in Table 6. In an attempt to determine the conditions that would cause a 100-year flood stage, or any other high flood stage, historical events were examined to establish the influence of wind, flood inflow, tidal cycle and barometric pressure on Delta stages. It was concluded that many combinations of these parameters could be possible, each with a varying degree of probability, and that predicting the factors which cause a particular high stage, or the effect of changes in one or more parameters, would be quite difficult.

When the stage-frequency data in this memorandum are used, it must be understood that:

1. For any particular frequency, the stage shown on the stage-frequency curve is valid only for that station. A stage created by any combination of high flows, tide, extreme barometric pressure, and winds could give a 100-year stage at one station and something of greater or lesser frequency at neighboring stations.

2. A maximum water-surface elevation plot developed for a particular frequency by straight-line connection of elevations from a series of stage-frequency curves will give an elevation higher, at some locations along the reach, than a historical event of corresponding frequency. This is due to the variation in width, depth and bottom slope of Delta channels. However, the error resulting from straight line elevations is less than 0.3 foot.

3. The stage data presented are for static water conditions. Wave action from wind, boats or other sources must be added to any stage data being analyzed. Wind set and any other hydrologic action that increases stages are reflected in the static stage data.

1. Sacramento River at Rio Vista - The stage recording gage for the Sacramento

River at Rio Vista was relocated from the Army Yard to the Rio Vista Bridge in 1981. The stage-frequency curve for the Bridge location is shown on Chart 4.

Based on the stage-frequency analyses for the American River Study, it was determined that the 1986 peak stages fell within the 50-90 year frequency, depending on location. The curve for Rio Vista was drawn to remain consistent with this finding and with the shape of the stage-frequency curve for Sacramento River at Threemile Slough. The 1986 peak stage at Rio Vista reflects approximately an 80 year frequency.

The records at the new and old gage sites have 5 years of overlapping record. The new location is slightly more than a mile upstream of the old location. However, for all five overlapping years, the peak stage at the new location was lower than the peak stage at the old location. There are many questions about subsidence and the reliability of surveyed bench marks in the Rio Vista area. This area is currently being included in the Global Positioning System in order to get a better handle on the amounts of subsidence occuring in the area. No data points are plotted on Chart 4 due to datum uncertainties. The data cannot be adjusted to mean sea level datum until the benchmark elevations in this area are verified.

TABLE 3SACRAMENTO RIVER - MOKELUMINE RIVERPEAK STAGES

																																													4			
1976	9	1981	ž	1973	190	1945	i¥1	1973	1972	1911	1963 1	1957	1961	1949 1	1960	1948	19,54	1968	1953	1946	1962	141	1962	1974	1963	1978	1959	1970	3 3	1953	1963	1969 1969	0861	1951	1978	1986	1952	1950	19.58	19.56	1973	1984	1983	I'ENR	MIER	SHUTTOO		
15	5	ы. Э	1	3.18	1,00	4,00	8	4,00	4.10	5	8. 3	ي	63	8	4.30	.8		4.30			• 8	4.50	.8	4.60	5	4.7	. 10	3,00	5,10	5.10	5.30	5,30	5,50		5.50	5,66	5.70	5.70	5.70	5.90	5, 8	5,80	œ۲	N III	STAGE	VILLE		
																_																	•			1941	1983	1967	1946	1981	1944	1903	1996	YEAR	WATER	NON		
																																				4.30	\$	5.00	5.30	5.60	6,9	7.20		1	STACE	STA NEW		
				1943	ž	198	Ē	3775	1957	1961	1949	i i i	1977	1960	E46	Ĭ	1979	Stet	1941	2461	1950	1961	1954	Ĭ	1991	1959	1974	3975	1978	195	1961	5861	1955	2962	1970	192	1951	# 561	Carec	1926	1973	1945	1984	YEAR	WATER	NON		
				4.98	.		8	5	5	6	5	1.90	4,90	4,98	.8	4.98	3.90	5,00	5.00	5.10	5,20	\$1.30	5.9	\$.50	5.30	5.40	5.8	5,69	3.60	5.70	5.80	5.80	8	5,90	6, 10	6,10	6.10	6.90	6.60	6.70	A, 20	7.50	7.60	1 1 1	STAGE	ISTA OLD	SACRANG	
197	Ĩ,	1961	1981	1983	1973	1913	Chei	8	1944	ž	Sher	1979	1954	1960	1961	19RG	1941	1973	1955	ē	1653	0561	1951	1957	183	1978	1955	198	1982	1945	Ĭ	1984	1967	1980	1983	19 89	1523	1974	1950	0163	18	1955	1986	NTEAL	WATER	UNTWA	NTO SIVER	
4.10		***	4,98	5.20	5.90	5.90	5,90	6,00	6,30	6.30	7.70	7.93	7,90	8	E. 10	9 ,10	1.10	a, 90	1,40	#.68	8.65	8 ,65	90.00	9.90	9,30	9.50	10,80	10.20	10,40	10.70	10.90	10.90	11.00	31.10	21.10	11.50	11.40	11.39	11.40	12.30	12.20	17.40	14.00	, n = 1	SIADE	T OROVE		
	Ē	. 1976	1941	1972	1944	2983	1955	1961	1961	1947	1966	1964	1949	ž	1941	1960	1959	1979	1975	1971	ä	37/61	1950	1978	1953	1943	1952	ž	346	180	ŝ	1973	1982	1944	1958	1965	1974	Car61	1410	1956	1965	1561	1986	YEAR	WATER	SNODOR		
	5	5,10	8	5. ¥	.	7.8	7.50	C10	1.60	I.99	6,90	9.10	11.00	11.20	12.99	01.10	12.30	12,30	12.50	U. 30	12,90	15.20	15.40	34.00	14.98	15.30	15,50	5.8	15.70	16.10	16,10	16.20	16.30	15.40	15, 50 15, 50	16. 5 0	15.50	<i>[7,</i> 00	17,10	17.20	17.60	18.00	19.70		STACE	A55 51.U		
				1972	1985	5561	1966	1961	1964	1947	1949	1961	56.61	9779	1165	1915	194E	ž	1934	1974	6561	1966	\$565	1957	1961	1973	55 55	1561	1974	C161	1981	1914	19	7	Set	1969	1970	0e61	1965	3956	1963	1951	2005	YEAR	WATER	I-STR		
				10.30	12.20	13.80	16. D	16,80	17.50	14.50	20.40	20,90	21.50	21.00	21,00	21.90	17.60	22,90	23,80	24.10	24,60	15,90	25,50	25,00	25.90	67.36	¥.8	27.50	27.20	27,20	27.50	번,동	27.40	27,40	27,50	21.30	24.20	24,30	11,40	241.70	29.40	30,10	30 .78	1 ===	STAGE	म्प्र त		_
1977	192	1957	1966	1944	1981	1972	1954	1955	1961	1945	1929	1975	1980	1920	1997	ttet	1979	1933	1974	eret	ž	1978	1946	ž	1541	1945	1952	iere i	1978	1969	2361	2061	1941	1980	1944	Clark I	1963	1990	SMGE	ns 6 t	1986	3261	1986	YEAR	WATER	NEW 1		
1.00	3	÷	•	, 1 0	*	9		4.30	. 8	8		4.98	5.8	5.8	5.10	Ŗ	5.58	5.35	5,40	5	5.70	6,08	6.10	6.30	7.50	7,70	7.90	7.30	5.76	7.90	8 ,98	£.10	E.30		F, 90	4.70	.9	9.10	9. 18	11.30	11.90	12.90	13.30	7	STACE	IOPE	MOKEIUM	
									1181	1976	ž	(Mel	0061	1 <u>8</u>	12465	1945	1948	1955	1966	191	1953	1954	1979	2061	1960	1959	1915	ž	1974	199	1963	1978	1961	1942	1961	1952	1984	1551	1980	1958	1936	1973	1988	YEAR	WATER	GEORGIAN	(B RIVER	
									8	4.9	1.10	12	4.20	ŝ	6.9	49	4.9	5	4.6	5	6.5	4.60	4.60	150	5	ŝ	6	5	3.00	50°,	5.14	110	115	3.50	3.50	3.60	5.70	603	6,10	\$	ŝ	6,90	7.00	Ĩ	STADE	1 7 210		

6

.

TABLE 4 SAN JOAQUIN RIVER PEAK STAGES

		_						-										-			_					_																					
197%6	1977	(979)	521	1861	1975	1961	1961	1949	1947	OOKI	1964	ÿ	1361	1986	1945	1974	1971	1941	6661	1947	5261	1953	1962 1	1978	at 61	0561	5	1994	1903	56	1986	0721	5	1922	1561	1969	1910	1924	1973	1986	1914	1936	1983		WATER	ANTI	
3.70	1. 18	4,10	4.10	4.10	4.18	4.2	4.20	8	8		5	1	4.50	8	\$	8	8	\$	4.70	67.4	5	<u>لا</u>	5	8	8	, 18	í.		£30	3.00	3,00	5.10	5.20	3,8	5.90	1. 1 .	5.78	5.90	5.90	6,00	6.10	6.30	6.90		STAGE	HE:O	
				1972	1977	34.61	1941	1961	1957	1964	64.61	1961	1972	1949	1955	55.61	1965	1251	1945	1942	1947	5867	1960	1946	(Set	1962	1974	1967	19134	1978	0561	1982	1963	1970	1967	1969	ದ 51	0661	1951	1958	1984.	PC861	1916	TEX.	WATER	3-MELE	
				, 1	1.40	¥.8	4.8	, 8	4.10	4,10	4,2	8	<u>لا</u>	8	4.30	8 , 9	4.30	*	8		*	4.5	4.50	4,68	4.66	4.60	к.)	4,2	1	4.90	6.90	<u>5,0</u>	5.00	5.00	5.20	5.20	5.50	3.30	5.60	5.80	6.10	6.90	6,40	7 192	STACE	NONGH	
														700	1973	18	ž	1966	1952	1991	1972	1929	62.61	1945	1961	1971	1975	1962	1365	1941	197 2	3974	1961	1983	1967	1970	Ĭ	Canal	as'6f	ž	1973	1964a	1981	YEAR	WATER	544 45	
														8	4.10	4.10	ł	4.8	8		4.90	8	4.60	6 .70	8	6.8	58	4.70	6 .9	5	1.10	5.10	3.20	5.90	5.45	5,50	5,70	5.90	6.30	6.40	5.30	6.38	5.10	71	STAGE	IDREAS	
į	ŝ	1977	18	6mst	ž	1961	1943	193	1957	1947	1964	1950	1953	1954	1979	186	. 1975	1945	1959	1960	340	1773	1971	1974	1962	1987	2002	1961	1981	1935	1983	1963	1961	1979	1951	ž	0861	1958	1973	1998	3661	1983e	1914	YEAR	WATER	VENCE	
1	ŝ	3,90	4,10	4.10	4.8	4.20	2	8	8	*. 1 5	÷.5	4.6	4.50	4.50	. 5	1.2	4.60	\$	4.70	к.	4,70	8	8	¢.8	£8	5.00	5.10	5.10	5.90	5	1.50	3.60	5.60	5,70	1.90	1.98 8	1.9	a. 30	6.8	6, 3	8	a. 180	8. 8	2	STAGE	ISLAND	SYNI NYS
ž	ŝ	1976	1977	1937	184	0C61	i w	1954	iy.	i i	1966	1972	1943	1929	1945	1955	1966	1973	198	5251	1971	1985	ŝ	Ĩ	1978	1981	1974	1983	199 FR	Ā	ig s	iş Ş	1952	1978	1980	ŝ	1951	1958	1973	198	1956	1981	1984	TEAR	WATER	MINDO	NIN NIVER
4,8	3	4.10	8	4.20	8	4.6	\$	1.8	4. 8	4.30	4.50	4,90	÷.5	4,60	4.8	4.60	4.60	5	ŝ	8	8	4,95	5.00 0	3,00	of'\$	5.10	5,10	3,10	5.20	5.60	3.60	5.70	8.8 8	5.00	4.10	6.10	68	8	5	8	8	6.90	6,90	A 101	STAGE	a PUMP	
														1976	1961	1964	1977	39961	1	3		ž	1939	\$161	1971	1975	1963	1967	1983	2 Hel	1978	1910	1974	1951	ž		970	1963		197	1986	1924	1961	YEAR	WATER	SMARE	
															1	4.¥	*	4.30	8	.			4.8	5.00	5.10	5.10	525	5.50	5.30	5.95	5,40	9.40	5,40	5.70	5,78	8	8		5	8	8	7.50	7,40	**	STATE	CUTOFF	
																1976	1991	ž	1973		i i	9	š	1971	30K	ž	1965	1975	1956	1974	1979	50	1151	1903	1965	576				Ĭ	196	6061	5958	YEAR	WAJER	BRANDI	
															:	4.8		5	8	5	5 2	5	8	8	1.10	5	5.60	5.60	5.70	5.90	6. 5 0	8	7.10	5	8	ŝ	5	a 141.9	5	1.0	5 15	12.76	13.00	A mel	STADE	BRIDGE	
					ŝ	đ.	1915	ž.	ję s	1972	3776	1960	196	8	35	1959	1953	4	1911		1913	1	1974	1966	1974	Š	1963	19779	1945	1945	1963	1976	1963	1970			1000			104	5	105	1951	YEAR	WATER	MOST	
			:	•		5	2		2	5	8	8	5.10	5	5	ŝ	5	3		ì			i i	3	8	8	10.00	10 20	8	12 8	14.10	6	8		5			1			5 2	5	2 5	7 32	STAR	BATA	

-

0Ţ

DFCG-5

TABLE 5 OLD RIVER - MIDDLE RIVER - GRANT LINE CANAL PEAK STAGES

1.1

											-	-	-					-	_				-	-											ļ	1	ŝ					_
E CANAL	AD BRIDGE	STADE A mul	1.60	8 1	8	6. 80	6.70	8		8	9. 8	97.5	8	18	8	8	4.70	ę.	9 1	8	2 9	8	9 . E	р. 1	9.F																	
GRANT LIN	AT TRACY R	WATER	1 461	1963	1551	24.67	0/51	Į	1961	1961	1965	121	ğ i	665	5961	1960	1975	6	161	į	5	1961	1945	1211	1976																	
	RUDCHI	EVIS V III	8,21	06.11	9	10.40	8	8.9	Ŗ	7,68	7.50	R.9	8	2 8	855	5.30	8	8	8			8	8	8	8	4.10	81	P														
	MOWIN	WATER	1551	1965	146 T	1986	980	a de	2261	1965	1978	5721	1961	1961	1274	666t	1975	1960	561	H61	1651	5163	1972	1941	781	1961	E	242														
REA	GHWAY	STAGE	96.39	8,9	8	8	8		2	5.76	3.5	3	8	214	\$.10	9.5	87	8. 7	8			Ŗ	84	8	8	8	8	R 5	1	3.4	9 4	,	3 1	11	8	8	4 .10	81			R	3.60
NEDDLR 1	BORDEN YO	WATER	3561	EH61	1946	1991			241	1951	1961	1961	22	5	4461	1930	<u>88</u>	5/61	161	Į	1	1961	1945	1961	1960	19.99	5	144	2061	7551	\$551	E.		961	14	1961	1951	× i	ŝ	14	Ŧ	34.61
	UNVD	aovus V mu	973	6.3	6,10	8	8	2 9	3	8,8	3.00	8;	21		2.7	8.	8	8	8 I	3	9	Ŗ	4.10	4.10	8;	8	8	90 m														l
	DACON L	WATER YEAR	9851	5261	#56f	1941		6361 10051	1963	1361	1963	16		16	(1161	5961	516)	6561	96 95	2121	561	1451	1961	1661	0861	5	94.61	Tool 1					_									
	BOGIN	EDVLS I V	6.3	Ą	8	6.80	8	2 9	83	6.8 9	8,1	2 2	r, i	2.8	92.5	8,4	8,4	8.4	P -	2 2	2 8	8	¥,4	3	Ŗ	97.7	2 1		8						-							
	TRACY B	WATER	1949	1551	E165	946	0/61		1961	1961	1361	1963	5	2001	1278	19.95	1960	1966	5/51	251		1961	1261	1961	5263	E 61	G#1	ik i	1876													
	COURT	STAOE A surf	7.30	7.10	8	9	5	9 5	8	3.8	8.5	9.5	8	3	8	P	84	ş	4		2 9	8	4.10	9.4	8.5	9	8.6	2 2	Ŗ										-			
IVER	CLIFTON	WATER YEAR	35.61	1943	5 9 61	1986		6/61 Maai	1940	1965	1961	1963	151	1161	6661	1960	161	9561	5261	- 13		1961	1965	1961	1961	1972	1911	71.61														
OC.D.R.	TRACT	EVII VII	6.60	3	8	6,10	8		35.5	5,40	4.85	4,80	ş :	9	4.55	87	4.25	R.	8.4	ş 1	2.5	5.70	3.60																			
	BYRCH	WATER	5161	SHE	345	1966	16	0451	1970	596t	1912	1961	1251		[ac]	1973	6464	141	171		1961	7761	1976																			
	HONOT	STAGE A met	6,70	8.8	2	8	<u>8</u> (3	8	2.3	5.10	8	81	3	Ŗ	2.7	8	9 9	ş :	, 1	1	9 ,4	8.4	9, 1	8	ş	81	8 8	8	8.5	8.5	8		19		-						
	ROCH	WATTER YEAR	9261	1551	561	5			596	1961	1996	5961	561	1974	171	561	9 7 61	6 6 51	881		5	1956	1957	1261	2191	1961	6	1000	G	1961	6261	161										

TABLE 650- and 100-YEAR STAGES

.v.v. a

......

......

0.00

Frequency Curve Number	Location	50-Year	100-Year
	SACRAMENTO RIVER		
2	Collinsville	6.3	6.4
3	Three-Mile Slough	7.7	7.9
4	Rio Vista	8.3	8.7
5	Walnut Grove	14.4	15.0
6	Snodgrass Slough	20.1	20.6
7	I-Street	30.4	31.4
	SAN JOAQUIN RIVER		
10	Antioch	6.3	6.5
11	Three-Mile Slough	6.3	6.4
12	San Andreas Landing	6.8	7.0
13	Venice Island	7.1	7.4
14	Rindge Pump	7.2	7.4
15	Burns Cutoff	7.4	7.6
16	Brandt Bridge	14.9	17.0
17	Mossdale	22.4	25.0
	OLD RIVER		
18	Rock Slough	6.8	7.2
19	Byron Tract	7.3	7.6
. 20	Clifton Court	7.5	7.8
21	Tracy Bridge	8.8	9.2
	MIDDLE RIVER		
23	Bacon Island	6.9	7.2
24	Borden Highway	7.3	7.6
25	Mowry Bridge	12.8	13.4
	OTHER STATIONS		
22	Grant Line Canal at Tracy Bridge	8.8	9.2
8	Mokelumne River at New Hope Landing	13.4	14.0
9	Georgiana Slough at Mokelumne River	7.5	7.8

5. WIND-WAVE RUNUP -

A. General - Wind-wave calculations were made for 12 locations in the Delta. These locations are shown on Chart 26. Table 7 shows the results of the wind-wave analysis.

B. Wind Analysis - Wind data from the Stockton Metropolitan Airport was used to compute the design windspeed. Although Stockton is some distance from some of the 12 locations, it was the closest location for reliable wind data. This analysis found that high winds can occur from most any direction particularly the North, Northwest and Southeast.

6. <u>MAXIMUM WATER-SURFACE ELEVATIONS</u> - Maximum water-surface elevations were developed for the rivers and sloughs in the Delta. The elevations are plotted for the estimated 1986 water surface, the 50-, 100- and 300-year events. The elevation plots are shown on Charts 27 through 74.

The 50-, 100-, and 300-year elevation plots represent an estimation of how the 50-, 100-, and 300-year stages, at the gaged locations, translate around the island. These plots should not be considered as "profiles" since that are derived directly from frequency curves of recorded maximum annual stages at gaged locations. As was discussed in the section "Flood Characteristics", on page 3, the annual maximum stages may result from an event that is not concurrent throughout the Delta. Therefore, the maximum water-surface elevations should not be considered to be concurrent throughout the Delta. While one area of the Delta is experiencing maximum elevations, the elevations in other areas will be rising or falling.

Some elevation plots may appear to be "increasing" in the downstream direction. McCormack-Williamson Tract, Chart 48, is a good example of this. However, it is important to remember that all elevations on these Charts are plotted relative to the island. Charts 75-91, which show island stationing, combined with Table 8, will help determine in which relative direction the plot was drawn around the island.

The 1986 flood elevations were estimated using recorded gage heights at the respective gage locations. The 1986 flood elevations reflect levee failures that occured in 1986. The elevations for the 50-, 100-, and 300-year events were derived using their respective elevations on the stage-frequency curves. As described in the stage-frequency analysis on page 4, the stage-frequency curves reflect a no levee failure situation. Therefore, the elevations are also no failure elevations.

In almost all cases, the elevation plots were drawn by straightlining between gaging stations. However, in areas where no recorded data were available, results from the State of California's Department of Water Resources Link Node computer model were used to estimate the water-surface elevation trend. The results of the Link Node model are not shown in this report. Water-surface profiles shown in the Documentation Report entitled "Sacramento-San Joaquin Delta, California" and dated October 1982 were also used to help in determining the water-surface elevation trends between gaging stations on the major rivers

in the Delta. Maximum water-surface elevatons on the Mokelumne River, North and South Forks of the Mokelumne River and Snodgrass Slough were based on results presented in Appendix C of the "Draft Environmental Report, Environmental Impact Statement, North Delta Program" prepared by the California Department of Water Resources and dated November 1990. In fringe backwater tributary channels of the Delta, it was assumed that the elevation in the tributary would be the same as in the major channel where the tributary connects.

7. <u>LEVEE CROWN PROFILES</u> - Levee Crown profiles were plotted from surveys acquired from each reclamation district. Some profiles show localized high points. These points are not indicative of the actual freeboard around the island. The levee stationing base maps, Charts 76-91, show the stationing along each levee crown for each island. Station zero on a water-surface profile is not always at the same location as station zero on the base map. Column 4 of Table 8, pages 16 and 17, lists the station on the base map that corresponds to station zero on the profile for each island.

The levee crown elevation for McCormack-Williamson Tract is mandated by the State of California Reclamation Board. This island will be allowed to fail during large flood events as was the case in 1986.

Location	Levee Slope	Wind Direction	Design Windspeed (mph)	Wind Duration (min)	Design Wave (ft)	Wind Set (ft)	Wave Runup (fl)	Water Depth (fl)	Fetch Length (ft)
Holland Tract	1:2	North	35	45	2.5	.17	4.95	15	15,850
Location I	1:3	North	35	45	2.5	.17	3.46	15	15,850
Quimby Tract	1:2	Northwest	29	51	2.1	.13	4.15	15	16,900
Location 2	1:3	Northwest	29	51	2.1	.13	2.89	15	16,900
Webb Tract	1:2	South	27	50	1.9	.10	3.70	15	15,850
Location 3	1:3	South	27	50	1.8	.10	2.56	15	15,850
Webb Tract	1:2	Southeast	35	47	2.3	.19	4,57	15	16,900
Location 4	1:3	Southcast	35	47	2.3	.19	3.30	15	16,900
Webb Tract	1:2	Southwest	23	60	1.7	.09	3.32	15	18,500
Location 5	1:3	Southwest	23	60	1.7	.09	2.30	15	18,500
Webb Tract	1:2	West	28	50	2.0	.11	3.89	15	16,150
Location 6	1:3	West	28	50	2.0	.11	2.70	15	16,150
Bethel Island	1:2	North	36	42	2.5	.17	4.90	15	14,600
Location 7	1:3	North	36	42	2.5	.17	3.41	15	14,600
Bouldin Island	1:2	Northwest	30	43	2.0	.11	3.84	15	13,500
Location 8	1:3	Northwest	30	43	2.0	.11	2.65	15	13,500
Sherman Island	1:2	Northwest	30	59	2.1	.17	4.20	15	21,350
Location 9	1:3	Northwest	30	59	2.1	.17	3.05	15	21,350
Jersey Island	1:2	West	27	76	2.1	.18	4.67	15	28,100
Location 10	1:3	West	27	76	2.1	.18	3.84	15	28,100
Twitcheli Island	1:2	Southcast	36	39	2.4	.16	4.71	15	13,500
Location 11	1:3	Southcast	36	39	2.4	.16	3.26	15	13,500
Venice Island	1:2	West	29	22	1.2	.04	2.28	15	5,200
Location 12	1:3	West	29	22	1.2	.04	1.50	15	5,200

TABLE 7 WIND-WAVE CALCULATIONS

and a constant of the second o

,

.

DFCG-5

.

. .

ISLAND NAME	ELEVATI ON CHART #	INDEX MAP CHART #('s)	ZERO STATION
ATLAS	26A	83, 84	110
BACON	27	82, 86	700
BETHEL	28	81, 82	480
BISHOP	29	83, 84	150
BOULDIN	30	78, 82, 83	0
BRACK	31	78, 79	240
BRADFORD	32	81	0
BRANNAN ANDRUS	33	77, 78, 81, 82	560
BYRON	34	86, 89	450
CANAL RANCH	35	79	0
CONEY	36	89	210
DEADHORSE	37	78, 79	130
DREXLER	37A	87	350
EMPIRE	38	83	540
FABIAN	39	89, 90	530
FAY	40	86	0
HOLLAND	41	82, 86	550
HOTCHKISS	42	81, 85, 86	380
JONES, LOWER	43	86, 87	0
JONES, UPPER	44	86, 87	0
KING	45	83	430
LITTLE MANDEVILLE	46	82	230
MANDEVILLE	47	82	730
McCORMACK-WILLIAMSON	48	76, 79	0
McDONALD	49	82, 83, 86, 87	700
MEDFORD	50	82, 83	0
MILDRED	50A	86	30
NEW HOPE	51	76, 79	20

TABLE 8ZERO STATION INDEX

TABLE 8ZERO STATION INDEX

ISLAND NAME	ELEVATION CHART #	INDEX MAP CHART #('s)	ZERO STATION
ORWOOD	52	86	0
PALM	53	86	0
PESCADERO	54	90, 91	0
PICO NAGLEE	55	89, 90	0
QUIMBY	56	82	0
RD 17	56A	88, 91	0
RINDGE	57	83, 87	810
RIO BLANCO	58	83	130
ROBERTS, LOWER	59	87, 88	0
ROBERTS, MIDDLE	59A	87, 88, 91	0
ROBERTS, UPPER	60	90, 91	750
SARGENT-BARNHART	60A	88	0
SHERMAN	61	80, 81	200
SHIMA	62	83, 84	0
SHIN KEE	63	83	0
STARK	64	90	0
STATEN	65	78, 79, 82	50
STEWART	65A	90, 91	110
TERMINOUS	66	78, 79, 83	127
TWITCHELL	67	81, 82	0
TYLER	68	78, 79	30
UNION	69	87, 89, 90	210
VEALE	69A	85, 86	70
VENICE	70	82	630
VICTORIA	71	86, 87, 89	790
WALNUT GROVE	71A	78, 79	10
WEBB	72	81, 82	0
WOODWARD	73	86	0
WRIGHT-ELMWOOD	74	83, 84, 87, 88	0

TABLE 9LEVEE CROWN SURVEY DATES

ISLAND	SURVEY DATE	ISLAND	SURVEY DATE
ATLAS	AUG 1979	PALM	JUNE 1991
BACON	JUNE 1991	PESCADERO	SEPT 1987
BETHEL	AUG 1991	PICO NAGLEE	JUNE 1987
BISHOP	AUG 1989	QUIMBY	APR 1990
BOULDIN	JULY 1991	RD 17	
BRACK	OCT 1988	RINDGE 🗸	JULY 1990
BRADFORD	AUG 1987	RIO BLANCO	MAY 89, July 91
BRANNAN ANDRUS	JUNE 1989	ROBERTS, LOWER	FEB 1987
BYRON	JUNE 1991	ROBERTS, MIDDLE	
CANAL RANCH	JUNE 1991	ROBERTS, UPPER	FEB 1987
CONEY	JUNE 1990	SARGENT BARNHART	
DEADHORSE	OCT 1988	SHERMAN	JULY 1990
DREXLER	****	SHIMA	MAR 1990
EMPIRE	JULY 1989	SHIN KEE	JUNE 1979
FABIAN	JULY 1987	STARK	JUNE 1987
FAY	MAR 1990	STATEN	MAR 1990
HOLLAND	JULY 1990	STEWART V	
HOTCHKISS	NOV 1990	TERMINOUS	JUNE 1987
JONES, LOWER	OCT 1990	TWITCHELL Y	AUG 1989
JONES, UPPER	1986	TYLER	SEPT 1986
KING V	JULY 1989	UNION	JUL, NOV 1991
LITTLE MANDEVILLE	OCT 1987	VEALE	
MANDEVILLE	DEC 1990	VENICE	AUG 1985
McCORMACK-WILLIAMSON	AUG 1989	VICTORIA	APR 1990
McDONALD	AUG 1991	WALNUT GROVE	
MEDFORD	APR 1991	WEBB b*	SEPT 1989
MILDRED		WOODWARD	1990
NEW HOPE	APR 1990	WRIGHT-ELMWOOD	JUNE 1991
ORWOOD	JUNE 1987		

18

DFCG-5

<u>م</u>

CHART 2

65 .

3.7

DFCG-5

73

1.015

16.

CHART 18 ·

· CHART 20

71. Exceedence frequency per 100 years 0.5 0.2 0.1 11 - 95 1 20 10 2 40 80 70 60 50 30 90 10 9 8 Peak stage in feet (ngvd) 7 6 5-4 3-2-1 Ō 500 1000 50 100 200 10 20 5 Exceedence interval in years SACRAMENTO - SAN JOAQUIN DELTA NOTES: PLOTTED POINTS ARE ANNUAL PEAK STAGES STAGE FREQUENCY CURVE CURVE PLOTTED GRAPHICALLY MIDDLE RIVER AT PERIOD OF RECORD 1958-1988 MISSING DATA 1968, 1967 **BACON ISLAND** POINTS BEYOND 95% EXCEEDENCE FREQUENCY NOT SHOWN CORPS OF ENGINEERS, SACRAMENTO, CALIFORNIA PLOTTED POINTS REPRESENT 29 YEARS OF DATA Prepared: J.H. Date: February 1992 Drawn: J.H.

CHART 23

7,6. Exceedence frequency per 100 years 11⁹⁵ 0.5 0.2 0.1 1 70 60 50 40 30 20 10 5 2 80 90 10 9 8 Peak stage in feet (ngvd) 7 6 5. 3 2 1 5 10 20 50 100 200 500 1000 Exceedence interval in years SACRAMENTO - SAN JOAQUIN DELTA NOTES: PLOTTED POINTS ARE ANNUAL PEAK STAGES STAGE FREQUENCY CURVE CURVE PLOTTED GRAPHICALLY PERIOD OF RECORD 1945-1988 MIDDLE RIVER AT MISSING DATA 1973, 1958 **BORDEN HIGHWAY** POINTS BEYOND 95% EXCEEDENCE FREQUENCY NOT SHOWN CORPS OF ENGINEERS, SACRAMENTO, CALIFORNIA PLOTTED POINTS REPRESENT 42 YEARS OF DATA Prepared: J.H. Date: February 1992 Drawn: J.H.

BA

.

ĩ

international in

.'

í

And a set of the set o

and a set of the set o

:

50-Year Elevations

LEVEE STATIONING IN THOUSANDS OF FEET

RECLAMATION DISTRICT 2117

7

6

5

4

3+

0

1986 Estimated Elevations

100-Year Elevations

SACRAMENTO-SAN JOAQUIN DELTA

MAXIMUM WATER SURFACE ELEVATIONS

CHART 37 SHEET 1 OF 1

τ[′]

Ŷ.

.

a contract of the second second

A construction of the second sec

Ŷ

in and a second an

¥

and a second a se

stores a store a store

Manual Sector Sector

ì

.

+

.

Allowerse Allowe

•

÷

.

and a second sec

•

and the second sec

House House

and a second and a second a se

.

.

.

Ý

97 - e - '

and the second s

fan e ye

 $u_{ij} \in \mathbb{R}^{d}$

DFCG-5

toosta 4

DFCG-5

DFCG-5