STATE OF CALIFORNIA DEPARTMENT OF PUBLIC WORKS

PUBLICATIONS OF THE DIVISION OF WATER RESOURCES EDWARD HYATT, State Engineer

Reports on State Water Plan Prepared Pursuant to Chapter 832, Statutes of 1929

BULLETIN No. 27

VARIATION AND CONTROL

OF

SALINITY

IN

SACRAMENTO-SAN JOAQUIN DELTA

AND

UPPER SAN FRANCISCO BAY

1931

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

80995

TABLE OF CONTENTS

ACKNOWLEDGMENT	Page 8
ORGANIZATION	
	a se se de la del contra de la c
ENGINEERING ADVISORY COMMITTEE	
FEDERAL AGENCIES COOPERATING IN INVESTIGATION	
STATE AGENCIES COOPERATING IN INVESTIGATION	12
CHAPTER 832, STATUTES OF 1929	13
FOREWORD	14
CHAPTER I	
INTRODUCTION, SUMMARY AND CONCLUSIONS	15
Area of salinity investigations	16
Sacramento-San Joaquin Delta	17
Suisun Bay area	18
Carquinez Strait area	
San Pablo Bay area	
Developments and interests affected by saline invasion	
Previous investigations The Antioch suit	
Investigations during period 1921 to 1929	
Scope of 1929 investigation	
Salinity conditions	
Basic factors governing salinity conditions	
Stream flow	
Consumptive use of water in delta	
Tidal action	
Relation of stream flow into delta to salinity	
Relation of tidal action to salinity	
Tidal diffusion Control of salinity	
Control flow	
Required supplemental water supply for control	
Conclusions	

CHAPTER II

SALINITY CONDITIONS IN SACRAMENTO-SAN JOAQUIN DELTA AND

UPPER SAN FRANCISCO BAY	46
Historical records of salinity conditions	46
Records of salinity observations	50
Extent of saline invasion	54
Salinity of drainage water from delta islands	56
Effect of salinity conditions on developments and interests	59
Basic factors governing salinity conditions	63
Stream flow	64
Variation of stream flow	65
Consumptive use of water in delta	68
Tides	75

CHAPTER III

RELATION OF STREAM FLOW INTO DELTA TO SALINITY	87
Relation of total seasonal stream flow into delta to salinity	87
Maximum salinity during season	
Minimum salinity during season	91
Advance of salinity	95
Relation of summer stream flow into delta to salinity	97
Relation of rate of stream flow into delta to salinity	102
Relation of source and distribution of stream flow into delta to salinity	108
Distribution of flow of Sacramento River in delta channels	109
Effect of distribution of Sacramento River flow on salinity	120

TABLE OF CONTENTS-Continued

Page

Effect of irrigation, storage and reelamation developments on stream flow	
into delta	124
Growth of irrigation	124
Growth of reservoir storage developments	136
Effect of upstream reclamation development on stream flow into delta	140
Estimated reduction in stream flow into delta	147

CHAPTER IV

11	LATION OD TIDAL ACTION TO CALLNUM	4 * 4
· Ľ	LATION OF TIDAL ACTION TO SALINITY	
	San Francisco Bay tidal basin	
	Historical limits	
	Effect of hydraulic mining and silting	153
	Growth and effect of reclamation in delta	. 157
	Effect of recent changes in delta tidal basin	161
	Tidal action	163
	The tidal prism	164
	Advance of tides	. 165
	Tidal volumes in delta and Suisun Bay	. 170
	Tidal prism volumes in delta and Suisun Bay	
	Tidal flow	
	Effect of tidal action on salinity	
	Tidal variations of salinity	
	Variation of salinity with tidal stage	195
	Lateral and depth variations of salinity	
	Variation of salinity with tidal velocity	
	Variation of salinity with tidal flow	
	Tidal diffusion	
	Magnitude of tidal diffusion	
9	Variation of tidal diffusion with salinity	
	Geographical variation of tidal diffusion	
	Relation of tidal diffusion to tidal flow	
	Effect of recent changes in delta tidal basin on saline invasion	
	Effect of Sacramento River channel enlargement	
	Effect of flooding of previously reclaimed lands	
	Effect on tidal diffusion	
	Effect of Stockton ship canal	- 218

CHAPTER V

CONTROL OF SALINITY	219
Stream flow required for control of salinity	220
Net control flows	221
Desired point and degree of control of salinity	221
Proposed net control flow	224
Gross stream flow into delta for control of salinity	226
Supplemental water supply for control of salinity	
Works required for proposed control of salinity by stream flow	235
Results of proposed control of salinity	237
APPENDIX A	
FIELD METHODS AND PROCEDURE IN SALINITY INVESTIGATION	245
APPENDIX B	
LABORATORY METHODS FOR DETERMINATION OF SALINITY	261

APPENDIX C

ECORDS OF SALINITY	OBSERVATIONS	267
--------------------	--------------	-----

APPENDIX D

STREAM FLOW	INTO	SACRAMENTO-SAN	JOAQUIN	DELTA	293	
-------------	------	----------------	---------	-------	-----	--

GLOSSARY

DEFINITION OI	TECHNICAL	TERMS	433
PUBLICATIONS	OF THE DIVIS	NON OF WATER RESOURCES_	438

LIST OF TABLES

Tabl		age
1	Consumptive use of water in Sacramento-San Joaquin delta	69
2	Total consumptive use of water in Sacramento-San Joaquin delta, 1929 season	70
3	Area and consumptive use of irrigated crops in Sacramento-San Joaquin delta, 1924 to 1929	73
4	Location and period of record of automatic tide gages	76
5	Tidal data for San Francisco Bay and Sacramento-San Joaquin delta	78
6	Relation of seasonal stream flow into delta to maximum salinity during season, 1920-1929	88
7	Relation of seasonal stream flow into delta to minimum salinity during season, 1923-1929	92
8	Relation of seasonal stream flow into delta to date of beginning of advance of salinity, 1920-1929	96
9	Relation of summer stream flow into delta to maximum salinity during season, 1920-1929	100
10	Relation of rate of stream flow into delta at time of maximum salinity to minimum salinity during season, 1920-1929	105
11	Summary of tidal cycle stream flow measurements	116
12	Area irrigated by direct diversion from Sacramento and San Joaquin River systems, exclusive of Sacramento-San Joaquin delta, 1879-1929	126
13	Gross annual irrigation diversions from Sacramento and San Joaquin River systems, exclusive of Sacramento-San Joaquin delta, 1879-1929	128
14	Gross monthly irrigation diversions from Sacramento and San Joaquin River systems, exclusive of Sacramento-San Joaquin Delta, 1912 to 1929	131
15	Reservoir storage capacity on Sacramento and San Joaquin River systems, 1850-1929	137
16	Principal storage reservoirs on Sacramento and San Joaquin River systems_	138
17	Monthly gross diversions to storage on Sacramento and San Joaquin River systems, 1912-1929	141
18	Delayed outflow from Sacramento Valley flood basins in their natural state before reclamation, 1907-1920	147
19	Reduction in stream flow into delta resulting from upstream irrigation and storage developments, 1911-1929	149
20	Area and volume of tidal prism in San Francisco Bay tidal basin	151
21	Annual minimum and maximum river stages of Sacramento River at Sacramento, 1849-1929	157
22	Growth of reclamation in Sacramento-San Joaquin delta, 1860-1930	158
23	Time interval between occurrence of tidal phases at Presidio and at points in San Francisco Bay and Sacramento-San Joaquin delta	166
24	Tidal prism volumes in tidal basin of Suisun Bay and of Sacramento-San Joaquin delta	177
25	Summary of tidal cycle salinity surveys, 1929	180
26	Summary of river cross section salinity surveys, 1929	200

LIST OF PLATES-Continued

Plate	Page
XXVI	Distribution of flow of Sacramento River through branch channels below Sacramentofollowing 118
XXVII	Relation of tidal flow through Three Mile Slough to range and dura- tion of tides at Three Mile Slough121
XXVIII	Relation of tidal flow through Three Mile Slough to range and dura- tion of tides at Presidio122
XXIX	Growth in area irrigated by direct diversion from Saeramento and San Joaquin River systems, exclusive of delta of Sacramento and San Joaquin rivers127
XXX	Growth of irrigation diversions from Sacramento and San Joaquin River systems 129
XXXI	Monthly diversions for irrigation and storage from Sacramento and San Joaquin River systems, exclusive of deltas of Sacramento and San Joaquin riversfollowing 136
XXXII	Growth of reservoir storage capacity in Sacramento and San Joaquin River systems 139
XXXIII	Changes in flood channels and basins of Sacramento and San Joa- quin rivers effected by flood control and reclamation development, and location of auriferous gravel areasfollowing 140
XXXIV	Tidal basin of Sacramento-San Joaquin delta and upper San Fran- cisco Bay region, showing progressive changes in reclamation developments, time of occurrence of tidal phases and tidal flow stations
XXXV	Changes in channel bed of Saeramento River, 1841 to 1929following 156
XXXVI	Growth in reclamation development in the Sacramento-San Joaquin delta 159
XXXVII	Rate of advance of tides in Sacramento-San Joaquin delta channels 169
XXXVIII	Accumulated tidal volumes in Sacramento and San Joaquin delta channelsfollowing 170
XXXXIX	Accumulated tidal volumes in Suisun Bay 171
XL	Tidal prism volumes in Sacramento River channels (Aug. 27-28, 1929)following 172
XLI	Tidal prism volumes in Sacramento River channels (Dec. 18-19, 1929)
XLII	Tidal prism volumes in San Joaquin River channels (Aug. 27-28, 1929)following 172
XT111	Tidal prism volumes in San Joaquin River channels (Dec. 18-19, 1929)following 172
XLIV	Tidal prism volumes in Suisun Bay and delta channels (May 13-14, 1929)following 172
XLV	Tidal prism volumes in Suisun Bay and delta channels (May 13-14,1929)
XLVI	Relation of tidal prism volumes to tidal range (Antioch and Collins- ville home sections)
XLVII	Relation of tidal prism volumes to tidal range (Suisun Bay home sections) 176
XLVIII	Tidal variation of sallnity at Point Orient 183
XLIX	Tidal variation of salinity at Crockett (Surveys No. 1 and 6) 184
\mathbf{L}	Tidal variation of salinity at Crockett (Survey No. 7) 185
Ll	Tidal variation of sallnity at Bulls Head Point 186
LII	Tidal variation of salinity at Avon and Nichols 187
LIII	Tidal variation of salinity at Bay Point 188

LIST OF PLATES-Continued

Plate		, Mage
LIV	Tidal variation of salinity at Collinsville	
LV	Tidal variation of salinity at Antioch	. 190
LVI	Tidal variation of salinity at Antioch Bridge	. 191
LVII	Tidal variation of salinity at Rio Vista	192
LVIII	Tidal variation of salinity at Central Landing and Curtis Landing	. 193
LIX	Tidal variation of salinity at Sacramento I Street Bridge and Moss- dale	
$\mathbf{L}\mathbf{X}$	Variation of salinity with tidal stagefollowing	7 194
LXI	Rate of variation of salinity with tidal range, in relation to mean salinity	
LXII	Relation of salinity to tidal stagefollowing	196
LXIII	Variation of salinity with depthfollowing	
LXIV	Lateral variation of salinityfollowing	202
LXV	Variation of tidal velocity in San Joaquin River near Antioch following	
LXVI	Variation of tidal velocity in Sacramento River near Collinsville	
LXVII	Variation of salinity and tidal velocity in Sacramento River near Collinsville	
LXVIII	Variation of salinity and tidal velocity in San Joaquin River near Antioch	205
LXIX	Variation of salinity and tidal velocity with depthfollowing	206
LXX	Variation of salinity with tidal action and stream flow at Antoch 1929following	
LXXI	Channel volumes in Suisun Bay, Sacramento and San Joaquin rivers	
LXXII	Estimated mean surface zone salinity (Bulls Head Point, Bay Point, O and A Ferry and Collinsville)following	
LXXIII	Estimated mean surface zone salinity (Mayberry, Emmaton, Three Mile Slough, Rio Vista, Antioch, Curtis Landing, and Jersey)	
LXXIV	Tidal diffusion in the combined channels of the Sacramento and San Joaquin riversfollowing	
LXXV	Tidal diffusion in Suisun Bayfollowing	212
LXXVI	Geographical variation of tidal diffusion	. 213
LXXVII	Relation of tidal diffusion to tidal flow	. 215
LXXVIII	Net stream flow for control of salinity at points in Suisun Bay and lower delta	
LXXIX	Gross stream flow into delta for control of salinity 0.6 miles below Antioch, with comparative stream flow and salinity records for years 1920-24-26-27-29	227
LXXX	Gross stream flow into delta for control of salinity at Collinsville, with comparative stream flow and salinity records for years 1920-24-26-27-29	;
TXXXI	Gross stream flow into delta for control of salinity at O and A Ferry, with comparative stream flow and salinity records for years 1920-24-26-27-29	be an
LXXXII	Delta of Sacramento and San Joaquin rivers, showing limits of salinity encroachment of 100 parts of chlorine per 100,000 parts of water, 1920 to 1931, inclusivefollowing	8

municipal and agricultural use in the upper bay region will necessitate the importation of supplies from some suitable source to supplement the local water resources which are capable of economic development. The nearest source of supply would be the lower Sacramento and San Joaquin rivers. The studies of water supply, yield and demand in the operation of the initial and ultimate developments of the State Water Plan show that most of the water supply required to be imported to the upper San Francisco Bay region could be furnished from this source. Therefore, the industrial, municipal and agricultural developments adjacent to Suisun and San Pablo bays are directly interested in the investigation of salinity, and particularly in the determination of a means of controlling saline invasion in such a way that water supplies now available or hereafter made available in the lower Sacramento and San Joaquin rivers would be maintained fresh at all times for diversion to supply the future needs of the upper bay region.

Previous Investigations.

The first investigations of salinity by the State were made in the fall of 1916 when a preliminary study and a few samples and analyses of the water were made by the State Water Commission. At this time, the potential seriousness of the salinity problem began to be recognized. Again in 1918 and 1919 some samples and analyses of the water at Antioch were made by the State Board of Health and the State Water Commission. However, the investigation of salinity in the upper bay and delta channels was not started on any extensive scale until 1920. The dry years of 1917 to 1919, combined with increased upstream irrigation diversions, especially for rice culture in the Sacramento Valley, had already given rise to invasions of salinity into the upper bay and lower delta channels of greater extent and magnitude than had ever been known before. At the beginning of 1920, it was evident that another dry year was impending which might result in serious water shortage and a possibly greater saline invasion. Accordingly, in February 1920, the State Water Commission and the State Engineer in cooperation with an organization of the delta land owners, designated the River Lands Association, arranged a cooperative program for a detailed investigation of the salinity conditions. Funds were provided partly by the State and partly by the River Lands Association. The State Water Commission furnished most of the personnel and equipment. Actual field work was started on May 25, 1920. Salinity observation stations, 28 in number, were established at various points in the delta channels and a regular schedule initiated for sampling of water. The samples were tested for salinity in terms of chlorine content by standard titration methods. The water samples were generally taken about every two days at about the time of high tide. In addition to these regular observation stations, a few special surveys were made to determine the variation of salinity through a tidal cycle and also the variation with depth, but these were not extensive enough to come to any definite conclusions. However, it was discovered that the highest degree of salinity usually occurred about one and one-half to two hours following high-high tide and the minimum salinity about the same time after low-low tide. In addition to the investigations made by the State in 1920, a large amount of additional investigational work was done by not greatly increase the expense of cooling water to the industries and the actual cost per 1000 gallons is small. Over 80 per cent of the total amount of water used by industries in the upper bay region is for cooling and condensing purposes. The use of saline water from the bay channels for cooling and condensing is satisfactory and little, if any, advantage would be gained if fresh water were available for this purpose.

From 1880 to 1920, Pittsburg (formerly Black Diamond) obtained all or most of its domestic and municipal water supply from New York Slough offshore. Although the records show that the water became too brackish to be suitable for domestic use during certain periods in the summer and fall months even before 1917 (See Table 34 for record of salinity, 1910 to 1916), the degree and duration of salinity greatly increased from 1917 on and necessitated the provision of a new source of supply. After providing temporary expedients, including the hauling of water in barges filled at points upstream where fresh water was available, the use of the river as a source of domestic and municipal water supply was discontinued in 1920 and since that time the supply has been obtained from local wells. From early days, Antioch has obtained all or most of its domestic and municipal supply from the San Joaquin River immediately offshore from the city. This supply also has always been affected to some extent by saline invasion with the water becoming brackish during certain periods in the late summer and early fall months. However, conditions were fairly satisfactory in this respect until 1917, when the increased degree and duration of saline invasion began to result in the water becoming too brackish for domestic use during considerable periods in the summer and fall. To meet this change in conditions, Antioch finally constructed a reservoir which is filled with fresh water from the river in the winter and spring and which is designed to supply the city during the period of the year when the water in the river is too brackish for municipal use.

The remaining cities and towns in the upper bay region have obtained fresh-water supplies from various local sources such as surface streams and wells and hence have not been affected by recent changes in salinity conditions. One public utility, serving the cities and towns of Contra Costa County from Pittsburg to Oleum as well as several industrial plants, has recently completed a new water supply development, punping water from the lower river near Mallard Slough about two miles west of Pittsburg and piping the same to a storage reservoir at Clyde just south of Bay Point. Water is punped when fresh and free from saline invasion and the storage capacity is designed to supply the demands during the remainder of the year when the water at the intake is too salty for fresh-water purposes.

The marshlands adjacent to Suisun Bay, especially the portion thereof in the upper half of the bay, have been affected to some extent by the more prolonged invasions of salinity of high degree since 1917. Although the area farmed is relatively small in extent, comprising only 5000 acres in 1929, water suitable in quality for irrigation has been available for much shorter periods during the last ten to fifteen years than in former years. This not only has curtailed irrigation diversions to crops, but also has limited the development of these marshlands because of the lack of availability for a sufficient period of time of fresh water for leaching the salts from the soils to make them fit for crop was equal to or greater than normal. However, in the 10-year period, 1919–1929, only two seasons have had normal stream flow and of the remainder, four have had but 50 per cent or less of normal stream flow. In the 13-year period, 1917–1929, there have been but two normal seasons of stream flow and of the balance, five seasons have had a total stream flow of 50 per cent or less than normal. It is particularly important to note that the period 1917–1929 has been one of unusual dryness and subnormal stream flow and that this condition has been a most important contributing factor to the abnormal extent of saline invasion which has occurred during this same time. Other factors which will be discussed hereafter have contributed to the salinity conditions, but the conditions of subnormal stream flow are believed to have been a major factor in bringing about the abnormal salinity conditions.

Even more marked variations occur in monthly stream flow into the delta. As shown in Table 38 and on Plate VIII, the monthly stream flow has varied from a minimum of 70,000 acre-feet in 1920 to a maximum of over 12,000,000 acre-feet in 1914, with an average of 1,845,000 acre-feet per month for the period 1911–1929. The average of the maximum monthly stream inflows for all seasons from 1911 to 1929 is 4,916,000 acre-feet. The smallest maximum monthly stream flow in any season during the period was in 1923–1924 and amounted to 1,254,000 acre-feet. For the thirteen-year period 1917 to 1929, the average monthly stream flow was 1,604,000 acre-feet. The minimum monthly stream flow from 1911 to 1929 during the summer period June to September, inclusive, in each season, ranged from 70,000 acrefeet in 1920 to 557,000 acre-feet in 1912.

The months of large stream flow generally occur in the period December to May corresponding with the winter and spring flood period. During the earlier months of December to March, inclusive, the larger stream flows are caused usually by rainfall in the valleys and foothill areas, occasionally augmented by melting snow in the lower mountains. It is in this period that most of the large floods have occurred. In the later months, April, May and June, the larger stream flows usually come directly from melting snows in the Sierra Nevada. Based on this period of record, 1911–1929, stream inflow during the six months' period, January to June, inclusive, on the average comprises 82 per cent of the total seasonal stream flow and during the seven months' period, December to June, inclusive, 88 per cent of the total seasonal stream flow. This leaves but twelve to eighteen per cent of the total seasonal stream flow occurring during the five or six summer and fall months up to the time that rains and winter freshets start normally each year. It is during this latter period that the maximum demands for irrigation and water consumption occur and this situation typifies the usual discrepancy which exists in California as between the occurrence of supply and demand for water. The period of low stream flow is also coincident with the annual invasion of salinity into the upper bay and delta channels.

The variations in rate of flow of the Sacramento and San Joaquin rivers into the delta are even more marked and of greater significance than the variations in monthly and seasonal inflow. During the period 1919 to 1929, inclusive, the combined flow of the Sacramento and San Joaquin rivers into the delta has varied from a minimum of about 700