Introduction to the Presentations to the National Research Council

 Delta Issues

 Delta Issues}

DELS-WSTB-09-09
1/26/10
Jerry Johns
Deputy Director
California Department of Water Resources

Overview

$>$ Water in California
> Water Supply Impacts of the Biological Opinion RPA's
$>$ Four Basic Facts About the Delta
> Alternatives to the Fish Agency RPA's

- Better Tools - Smelt PEJ
- Better Protective Actions - Salmon Barrier
- Better Approach - Food - tidal habitat / N

Figure 7b. Historic Diversions before the Delta, in-Delta Uses and Exports from the Delta, plus Outflows

Importance of the Delta to California

, Water Supply

- 25 million Californians and 3 million acres of agriculture rely on the Delta for water
- Water supply for $\$ 400$ billion of annual economic activity

In-Delta Land Use
-558,000 acres in agricultural production

- 64,000 acres of urban and commercial development
- Environment

Confluence of California's two largest watersheds (Sacramento River and San Joaquin River)
More than 750 plant and animal species
More than 40 threatened or endangered species

Four Basic Bay/Delta Facts

> (1) The fishery food web recently altered
> (2) The Delta is a Tidal Estuary
> (3) Some good relationship exist between Delta flows and "take" (salvage) at SWP/CVP pumps in South Delta
> (4) Relationship between fish take and fish abundance - "small to negligible"

- Need comprehensive solution to the many fish stressors and "reasonable" controls on SWP/CVP exports

Exhibit D
 The Pelagic Organism Decline

[^0]
(1) The fishery food web recently altered

> Invasive Species

- Corbula clams in Suisun Bay -Phytoplankton crash
- Limnoithona - now most dominant zooplankton and not a good food source for fish
- Aquatic weeds - Egeria - reduce turbidity and provide cover to predators in the Central and Southern Delta
> Increased ammonia discharges
- Change in Nitrogen to Phosphorus ratios
- Related to more green and blue green algae (microcystis) fewer Diatoms

Phytoplankton Primary Production

Source: J. Cloern (USGS): Oral presentation at the 2007 Annual IEP Workshop, Asilomar, CA

Phytoplankton Primary Production
in Estuaries is typically very HIGH

Source: S. Nixon, Limnology and Oceanography ${ }^{15} 1988$

Phytoplankton Primary Production

CRASHED in Suisun Bay right after the Corbula invasion

[^1]

Zooplankton Species Invade in "Waves"

Adult copepods at Chipps Island, yearly average densities with 5 -year moving average lines
Source: A. Mueller-Solger, DWR; IEP data

There is Evidence That Zooplankton Biomass Affects Delta Smelt Survival in Summer

Spring Food Abundance also Important to Delta Smelt

actual \& predicted FMWT delta smelt abundance index

(2) The Delta is a Tidal Estuary

$>$ The Deta Not a river - Need to understand Tidal effects

- 2 high tides and 2 low tides per day
$>$ Delta Outflow - $\quad+6,000$ cfs net daily flow 300,000 cfs tidal flow
> Old and Middle River flows

$$
\begin{aligned}
& -3,000 \text { cfs net daily flow } \\
& 30,000 \text { cfs tidal flow }
\end{aligned}
$$

> (3) Some good relationship exist between Delta flows and "take" (salvage) at SWP/CVP pumps in South Delta

- Non-linear relationship between January and February OMR flows and Salvage of many fish species - $-6,000$ cfs
- Particle tracking and young smelt salvage
> (4) No substantial relationship between "take" and fish abundance
- Reducing "take" will not restore fish populations
- Look at last four years
- Take should be "reasonably" limited to avoid rare high take events

Project Effects and Delta Smelt Response

| Year Types | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Sac/SJR | W/AN | W/AN | D/D | D/D | AN/AN | BN/D | BN/W | W/W | D/C | C/C | D/D | Sac/SJR

Project Effects and Delta Smelt Response

Project Effects and Delta Smelt Response

Frustrations with ESA
 Section 7 Process

> One Stressor / One Fish at a time

- Need more Holistic / Systems approach
$>$ Delta is one of the most studied systems
- We need to be looking at all this data
> Hammer / Nail syndrome
> "Take" focus instead of population effects
> "Critical Habitat" has become "Any Habitat"

Conclusion

> Exports - the only source of fish mortality evaluated
> Many factors affecting "at-risk" fish species in the Delta

- Controlling exports only has not improved delta smelt abundance
> Reasonable export constraints are prudent to prevent peak entrainment events
> A comprehensive effort is needed to better protect "atrisk" fish species -
- Bay Delta Conservation Plan (BDCP)
$>$ RPAs should be adjusted to use
- Better Tools - Delta Smelt PEJ
- Better Actions - Salmon Non-Physical Barrier - SJR
- Better Approach - Food - Tidal Habitat / N loading

End

[^0]: Source: Kimmerer and Nobriga (2005); Sommer et al. (In Press, Fisheries 32(6))

[^1]: Sources: J. Cloern (USGS) \& A. Jassby (UCD): Oral presentations at the 2007 Annual IEP Workshop, Asilomar, CA

