Cas	e 1:09-cv-00407-OWW-DLB	Document 455	Filed 12/07/20	09 Page 1 of 20						
1	EDGAR B. WASHBURN (CA SBN 34038)									
2	EWashburn@mofo.com CHRISTOPHER J. CARR (CA SBN 184076) CCarr@mofo.com WILLIAM M. SLOAN (CA SBN 203583)									
3										
4	WSloan@mofo.com CORINNE FRATINI (CA SBN	259109)								
5	CFratini@mofo.com MORRISON & FOERSTER	LLP								
6	425 Market Street San Francisco, California 9410	5-2482								
7	Telephone: 415.268.7000	1 01 50 0)								
8	KAREN L. TACHIKI (CA SBN General Counsel	N 91539)								
9	LINUS MASOUREDIS (CA SE LMasouredis@mwdh2o.com	3N 77322)								
10	THE METROPOLITAN WA'	TER DISTRICT O	F							
11	1121 L Street, Suite 900	2074								
12	Telephone: 916.650.2600	5974								
13	Attorneys for Plaintiff	D DISTRICT								
14	OF SOUTHERN CALIFORNIA	A								
15	UN	NITED STATES DIS	STRICT COURT							
16	EAS	STERN DISTRICT (OF CALIFORNIA	A						
17			1:09-cv-4	07 OWW GSA						
18	THE DELTA SMELT CASES,		1:09-cv-4 1:09-cv-6	22 OWW GSA 531 OWW GSA						
19	SAN LUIS & DELTA-MENI AUTHORITY, <i>et al.</i> v. SALA	DOTA WATER AZAR, <i>et al</i> .	1:09-cv-8 PARTIA	392 OWW GSA LLY CONSOLIDATED						
20	(Case No. 1:09-cv-407)		WITH: 1:	:09-cv-480 OWW GSA						
21	STATE WATER CONTRAC et al. (Case No. 1:09-cv-422)	TORS v. SALAZAI	R, SUPPLE	MENTAL						
22	COALITION FOR A SUSTA	INABLE DELTA,	DECLAI RICHAR	RATION OF DR. RD B. DERISO IN						
23	<i>et al.</i> v. UNITED STATES F. SERVICE, <i>et al.</i> (Case No. 1)	ISH AND WILDLIF :09-cv-480)	^{TE} SUPPOR INTERIN	AT OF MOTION FOR						
24	METROPOLITAN WATER	DISTRICT v.	RELIEF INJUNC	/PRELIMINARY TION						
25	UNITED STATES FISH AN SERVICE, <i>et al.</i> (Case No. 1)	D WILDLIFE :09-cv-631)	Date: J	anuary 20, 2010						
26	STEWART & JASPER ORC	HARDS, <i>et al.</i> v.	Time: 9 Ctrm: 3	9:00 a.m.						
27	SERVICE, <i>et al.</i> (Case No. 1)	D WILDLIFE :09-cv-892)	Judge: H	Ion. Oliver W. Wanger						
28	SUPPLEMENTAL DECLARATION OF DR. RICHARI Case No. 1:09-CV-0407-OWW-GSA	B. DERISO IN SUPPORT OF MO	DTION FOR PRELIMINARY I	INJUNCTION						

Case 1:09-cv-00407-OWW-DLB Document 455 Filed 12/07/2009 Page 2 of 20

1	I, Dr. Richard B. Deriso, declare:						
2	I. INTRODUCTION						
3	II. RPA COMPONENT 1 – ADULTS						
4	A. Actions 1 and 2 Involve Setting OMR Flows During the Adult Life Stage of the Smelt						
5	B. The Data Does Not Support the Conclusion That Winter OMR Flows Have a Statistically Significant Effect on the Population Growth Rate						
7	1. Daily Data Shows That the Salvage Rate Is Essentially Flat Until OMR Flows Reach -5500 Cfs						
8	2. Using a Weight of the Evidence Approach, a Model Incorporating OMR Flows Does Not Have Substantial Support						
10	III. RPA COMPONENT 2 – JUVENILES						
10 11	A. Action 3 Involves Setting OMR Flows During the Larval/Juvenile Life Stage of the Smelt						
12	B. The Data Does Not Support the Conclusion That Spring OMR Flows Have a Statistically Significant Effect on the Population Growth Rate						
13 14	C. Variability From Juvenile to Adult Life Stages14						
15	I. INTRODUCTION						
16	1. In my previous declarations, the first dated July 31, 2009 and the second dated						
17	November 13, 2009, I used classical statistics to explain the quantitative effects analysis						
18	contained in the 2008 Delta Smelt Biological Opinion ("BiOp") prepared by the U.S. Fish and						
19	Wildlife Service ("FWS"). I used this approach to be consistent with the models and data						
20	analysis that FWS used, but I also explained the clear errors and major departures from well-						
21	accepted scientific standards that I identified. My review was limited to the data and information						
22	contained in the BiOp itself and the administrative record.						
23	2. In preparing this declaration, I have focused specifically on the two "Reasonable						
24	and Prudent Alternative" Components of the BiOp (Components 1 and 2) that operate to limit						
25	water exports by restricting OMR flows in the winter and spring periods, beginning as early as						
26	December 1 and running potentially to June 30. This work included further analysis of the data						
27	contained in the BiOp, as well as data received through a Freedom of Information Act ("FOIA")						
28	///						
	SUPPLEMENTAL DECLARATION OF DR. RICHARD B. DERISO IN SUPPORT OF MOTION FOR PRELIMINARY INJUNCTION Case No. 1:09-CV-0407-OWW-GSA						

request to FWS.¹ In this declaration, I have employed additional statistical approaches to 1 2 evaluate any potential relationships between Old and Middle River ("OMR") flows and 3 population growth for both adults and juveniles. After conducting several analyses of the 4 available data using a variety of statistical approaches, I have reconfirmed the result that I reached 5 in my previous declarations, namely, that the data does not show that OMR flows have a 6 statistically significant effect on the population growth rates of either adults or juveniles; i.e., for 7 either winter or spring flows. Moreover, in this declaration I establish that a relationship between 8 winter OMR flows and the salvage rate exists only at very negative flows, and the complete 9 absence of a relationship between spring OMR flows and salvage rate. 10 3. My qualifications and experience are set forth in my previous declaration, Docket 11 #401, at ¶¶ 5-10 and Exhibits A and B thereto. 12 II. **RPA COMPONENT 1 – ADULTS** 13 Actions 1 and 2 Involve Setting OMR Flows During the Adult Life Stage of A. the Smelt 14 15 4. The BiOp's RPA Component 1 is divided into two parts labeled by FWS as 16 "Actions 1 and 2," and involves limiting OMR flows with the intent to protect the species. 17 5. Action 1 is triggered first based on a determination by FWS using turbidity and 18 other criteria. Action 1 limits exports so that the average daily OMR flow is no more negative 19 than -2,000 cfs for a total duration of 14 days, with a 5-day running average no more negative 20 than -2,500 cfs (within 25 percent). BiOp at 329 (Administrative Record ["AR"] at 000344). 21 6. After Action 1 ends, it is followed immediately by Action 2, which if triggered 22 will last until spawning begins or a certain water temperature is reached. Action 2 limits the 23 range of net daily OMR flows to no more negative than -1,250 cfs to -5,000 cfs. Specific OMR 24 25 ¹ The FOIA request was submitted by the Metropolitan Water District of Southern California to FWS on August 10, 2009. FWS responded by returning a disc with approximately 26 half of the data requested on October 29, 2009. FWS referred the remainder of the request to the U.S. Bureau of Reclamation ("BOR"). On November 23, 2009, after my last declaration was 27 filed, BOR provided most of the balance of the data requested. 28

flows within this range are recommended by the Smelt Working Group depending on certain
 factors, such as sampling data, salvage data, flow, and turbidity. BiOp at 352 (AR at 000367).
 7. Both Actions involve the setting of OMR flows within the range of -1,250 cfs to
 -5,000 cfs.

5 6

B.

The Data Does Not Support the Conclusion That Winter OMR Flows Have a Statistically Significant Effect on the Population Growth Rate

7 8. In my previous declaration, I explained that standard practice in fisheries stock 8 assessment requires evaluation of the effect of salvage on the population growth rate. The 9 population growth rate represents the relative increase or decrease in adults from one year to the 10 next, or generation to generation. I analyzed the data to determine if there is a relationship 11 between the adult salvage rate and the population growth rate. I also analyzed the data to 12 determine if there is a relationship between winter OMR flows and the population growth rate. In 13 both analyses, I found that the data does not support the conclusion that either salvage rate or 14 OMR flows has a statistically significant effect on the population growth rate. See Docket #401 15 at ¶¶ 66-74.

16

17

1. Daily Data Shows That the Salvage Rate Is Essentially Flat Until OMR Flows Reach -5500 Cfs

9. In analyzing Component 1, I evaluated the relationship between daily DecemberMarch OMR flows and the adult salvage rate (i.e., cumulative salvage index) so I could determine
whether flows and salvage were correlated during this period. FWS provided daily OMR flows
from 1984 to 2006, so I grouped those daily flows into "bins," or sets of like data, in increments
of 500 cfs.²

- 23
- 23 24

10. I then calculated the average daily salvage rate for each of the flow bins. The daily salvage rate is equal to the number of fish salvaged in a given day divided by the prior year Fall
Midwater Trawl ("FMWT") index, except that in December the current year FMWT index is used

26

25

 $^{^{2}}$ The bins are labeled by the most negative number in the bin, e.g., a bin labeled -1500 includes flows from -1000 cfs to -1500 cfs.

(as December falls after the FMWT has been completed but is in the same calendar year). Daily
 salvage rates for all days selected³ with flow that falls within a given 500 cfs bin were averaged to
 produce the average daily salvage rates shown in the histogram below.

exceeds 12 NTU. Turbidity, salvage, and OMR flows were provided through the FOIA request described in footnote 1 above. I excluded the years that were excluded from Figure B-13 in the BiOp, namely, 1987, 1989-1992, 1994, and 2007.

1 March salvage for the same years and used FMWT data available at:

2 <u>http://www.delta.dfg.ca.gov/data/mwt/charts.asp</u>. I excluded the same years of low turbidity that

3 were excluded in Figure B-13 (1987, 1989-1992, 1994, and 2007).

4		Salvage-	Calvana		Quantitativa
5	Voor		Salvage		Cumulative
5	fear	OWR	Dec-march	Vear-1	Index
6	1984	-2226	2309	132	17.49
	1985	-6458	4151	182	22.81
7	1986	-2787	3716	110	33.78
0	1988	-8409	14848	280	53.03
8	1993	-7450	4425	156	28.37
9	1995	-7006	2608	102	25.57
/	1996	-5643	5634	899	6.27
10	1997	2909	1828	127	14.39
	1998	784	1027	303	3.39
11	1999	992	2074	420	4.94
10	2000	-5299	11493	864	13.30
12	2001	-5727	8003	756	10.59
12	2002	-7985	6865	603	11.38
15	2003	-8577	14305	139	102.91
14	2004	-9133	8148	210	38.80
	2005	-7338	2018	74	27.27
15	2006	-1600	324	27	12.00

16 15. The OMR data in the table is very similar to the data used in my previous
17 declaration, but the analysis made in this declaration can now be extended back in time to 1984 to
18 correspond with the time period analyzed in Figure B-13 in the BiOp.

19 16. I then fitted a piece-wise linear model to the cumulative salvage index as a 20 function of December-March salvage-weighted OMR flows. To fit a piece-wise linear model, I plotted the data on a graph and tested the "fit" of straight lines to the data points using a well-21 22 accepted, objective statistical approach called maximum likelihood estimation. The BiOp used 23 this approach in Figure B-14, but applied it to raw salvage numbers whereas I used the cumulative salvage index. See BiOp at 350 (AR at 000365). As I explained in my previous 24 25 declaration, raw salvage numbers are not proportional to the total population and thus they do not reflect population level effects. See Docket #401 at ¶¶ 52-61. The results of my piece-wise linear 26 27 model are similar to the results shown in my previous declaration with the slope of the initial 28 piece not significantly different from zero (p-value > 0.1). SUPPLEMENTAL DECLARATION OF DR. RICHARD B. DERISO IN SUPPORT OF MOTION FOR PRELIMINARY INJUNCTION 6 Case No. 1:09-CV-0407-OWW-GSA

14 (Note: The steeply increasing linear piece above *is* a straight line but not displayed as such due
15 only to a software graphical defect.)

18. As seen in the graph at paragraph 16, the three years with OMR flow more 16 negative than -8000 cfs are 1988, 2003, and 2004—they are also years that had high salvage rates. 17 With flow as an explanation for these salvage rates, I next evaluated whether adult abundance as 18 measured by the prior year FMWT index accounted for changes in the amount of salvage in other 19 years. To do that evaluation, I compared a simple model in which total adult salvage is 20 proportional to the prior year FMWT index (the "proportional model") as against another model 21 in which total adult salvage was independent of FMWT (the "alternative model"). I used a 22 "weight of the evidence" approach to evaluate which model better explained the variation in adult 23 salvage. This approach generates what is known as an "Akaike AICc score" for each model 24 compared. The scores are used as a measure of the weight of the evidence in favor of one model 25 as against another. A lower AICc score means the model better explains the variables being 26 tested. See Burnham, K. & Anderson, D., Multimodel Inference, Understanding AIC and BIC in 27 Model Selection, 33:2 Socio. Methods & Res. 261-304 (2004). 28

1 19. The Akaike AICc score for the proportional model was more than 17.0 below the 2 alternative model. This means that the weight of evidence as measured by Akaike weights was 3 about 100 percent in favor of the proportional model. The data used for this analysis is shown in 4 the table in paragraph 14 above. A graph of salvage versus the prior FMWT shows the strong 5 linear relationship between the two factors (r=0.82, which is statistically significant at p-value < 6 0.001), again excluding the years 1988, 2003, and 2004. The graph below shows the result that 7 annual salvage has decreased with decreases in annual adult abundance with the exception of 8 years with very negative OMR flows, i.e., less negative than -8000 cfs.

1 weight of evidence in favor of a model fit that does not include December-March OMR flows.

(The result was 71 percent using salvage-weighted OMR flows.) 2

3			Number of					
4		Dec-Mar OMR	observations	20				
-		Number of Parameters	3	4				
5			S only	OMR & S				
6		RSS In(like)	15.09 -27 14	14.22 -26 55				
7		AIC	60.29	61.09				
,		AICc	61.79	63.76				
8		Delta e^-d/2	0.00	1.97 0.37				
9		Weight	0.73	0.27				
10	21. Havin	g now evaluated the	data using several di	fferent statistic	al approaches, I			
11	again conclude that th	ne level of December	-March OMR flows	does not have	any statistically			
12	significant effect on t	he population growth	n rate of the delta sm	elt. With respo	ect to the salvage			
13	rate, only December-	March OMR flows n	nore negative than -6	5,100 cfs show	any correlation to			
14	the salvage rate.							
15	III. RPA COMP	ONENT 2 – JUVEN	ILES					
16	A. Action	3 Involves Setting	OMR Flows Durin	g the Larval/J	uvenile Life Stage			
17	of the	Smelt						
18	22. The B	iOp's RPA Compone	ent 2 is implemented	through what	is labeled by FWS as			
19	"Action 3." Action 3	is designed to comm	nence based on a ten	perature trigge	er, or at the onset of			
20	spawning, and remain	ns in place until June	30 or when a specif	ic higher tempe	erature is reached,			
21	whichever occurs firs	t. Under this Action	, FWS limits net dai	ly OMR flow t	o no more negative			
22	than -1,250 cfs to -5,0	000 cfs based on a 14	-day running averag	ge with a simult	taneous 5-day			
23	running average with	in 25 percent of the a	pplicable requireme	nt for OMR. S	pecific OMR flows			
24	within this range are recommended by the Smelt Working Group depending on certain criteria,							
25	including sampling d	ata, salvage data, flov	ws, and turbidity, bu	t FWS makes t	he final			
26	determination.							
27	///							
28	///							
	SUPPLEMENTAL DECLARATION Case No. 1:09-CV-0407-OWW	OF DR. RICHARD B. DERISO IN 3	SUPPORT OF MOTION FOR PRE	LIMINARY INJUNCTION	10			

sf-2772528

1 2

B. The Data Does Not Support the Conclusion That Spring OMR Flows Have a Statistically Significant Effect on the Population Growth Rate

23. To evaluate the available data on juveniles, I tested the relationships between 3 April-July salvage-weighted OMR flows and the juvenile salvage rate, and between average 4 OMR flows and the juvenile salvage rate. I included OMR flows for the years 1996-2007 but 5 excluded the years 1995, 1998, and 2006 as those three years had positive average OMR flow. 6 See BiOp at 220 (AR at 000235) (excluding 1995 and 1998); Docket #401 at ¶¶ 100-105 7 (explaining that 2006 had positive average flow). I constructed a juvenile salvage rate index by 8 dividing the total salvage for April-July by the juvenile abundance 20-mm survey index. The 20-9 mm survey index was not available prior to 1995, preventing the inclusion of more years in this 10 analysis. I relied on data from Table C-4 on page 392 of the BiOp (AR at 000407), as well as 11 daily data provided by FWS in the FOIA response, to construct the following table. 12

- 13 April-July salvage/20-14 Salvage Prior mm index juvenile Average 20-mm Salvage weighted average 15 FMWT index STNS Salvage Rate OMR OMR (Apr-Jul) year 899 33.9 11.1 40099 -4251.57 1996 1182.86 -3130.94 16 42091 1997 127 19.3 4 2180.88 -4942.25 -2752.17 152526 1999 420 39.7 11.9 3841.96 -3806.11 -3650.77 17 2000 864 23.8 101783 4276.60 -5494.42 -4707.09 8 2001 756 11.3 3.5 15984 1414.51 -4310.28 -2319.17 18 2002 603 8 4.7 59652 7456.50 -5587.61 -2832.55 2003 139 2001.53 13.1 1.6 26220 -6447.81 -5616.60 19 2004 210 8.2 2.9 12441 1517.20 -6193.22 -5215.33 20 2005 74 15.4 0.3 1734 112.60 -510.99 168.53 2007 41 0.4 2669 2669.00 -3864.97 -4594.10 1 21
- 24. The results indicate that spring OMR is not positively correlated to either salvage
 rate or salvage using either average OMR flows or salvage-weighted OMR flows. The 20-mm
 survey index is significantly positively correlated to spring salvage (p-value = 0.007). Spring
 juvenile salvage is better predicted simply based on abundance than by any measure of OMR
 flow. Also notable is the significant positive correlation between salvage and the Summer
 Townet Survey index ("TNS"). The positive correlation means that in years with higher
 ///

Case 1:09-cv-00407-OWW-DLB Document 455 Filed 12/07/2009 Page 13 of 20

1 abundance as measured by both the 20-mm index and the TNS, salvage is also higher. The

2 correlations are shown in the table and graph below.

									weia	hted
			previous	20-mm			Salvage		averad	e OMR
	Sample Correlations		FMWT	index	STNS	Salvage	Rate	OMR	(Apr	-Jul)
			4.00							
previou	IS FIMIVU I		1.00	4.00						
	Index		0.44	0.00	, 100					
Salvad	۵		0.00	0.03	. 0.80	1 00				
Salvag	e Rate		0.30	-0.03	0.27	0.54	1.00			
OMR	o rialo		-0.20	0.15	-0.12	-0.15	-0.42	1.00		
weighte	ed average OMR (A	(pr-Jul	0.01	0.10	-0.10	-0.18	-0.23	0.82		1.00
	- · ·									
									weig	hted
Dualu	a for one aided by	othopia	nrouiouo	20-			Salvaga		aver	rage
P-Value	e lor one-sided hypo est for correlation>(otnesis 1	FMW/T	IIIII indev	STNS	Salvara	Salvage	OMR	UMR	(Apr- 1)
l)	1 101001	IIIUEX	31113	Salvaye	Nate	OWIN	JL	<i></i> ,
oreviou	IS FMWT		1 00							
20-mm	index		0.099	1.00						
STNS			0.014	0.0003	1.00					
Salvad	e		0.123	0.007	0.002	1.00				
Salvag	e Rate		0.201	Na	0.221	0.052	1.00			
OMR			na	0.344	na	na	na	1.00		
weighte	ed average OMR (A	pr-Jul)	0.491	0.392	na	na	na	0.002		1.00
	Sur 16 14 12 10 8 6 4 2 0	mmer	townet s	urvey in	dex vs	spring	salvage	0000 18	30000	

Paragraphs 26 and 27. Daily salvage values for the spring (April through July) were not included; therefore, I obtained these from Metropolitan.

1	measured by the TNS for years 1987-2007). ⁵ The TNS does not then significantly correlate
2	(r=0.34; p-value > 0.05) to the next FMWT (juveniles to adults) and there is considerable
3	variability in that relationship. (In fact, there is variability from adults to juveniles as well.) In
4	my professional experience with fish population dynamics, this phenomenon is due to the
5	variability typically observed in fish populations between those life stages. I have reviewed the
6	literature relied on in the BiOp, and the observations by others confirm this variability exists for
7	the smelt. See, e.g., Bennett, W., Critical Assessment of the Delta Smelt Population in the San
8	Francisco Estuary, California, San Francisco Estuary & Watershed Science 26 (2005)
9	("stockrecruit relationships typically exhibit considerable variability (see Myers and others 1995
10	for a catalogue of 274 relationships)"). Scientists in this field have observed that there is a 50-
11	fold variability for delta smelt. See Kimmerer, W., Losses of Sacramento River Chinook Salmon
12	and Delta Smelt to Entrainment in Water Diversions in the Sacramento-San Joaquin Delta, San
13	Francisco Estuary & Watershed Science 1 (2008).
14	32. On the subject of variability, Bennett makes the following further observations:
15	In reality, however, estimating the proportion lost to exports
16	misrepresents their actual impact on the population, especially during years if and when other sources of mortality (e.g. density
17	dependent effects) are important at later life stages. As in many fisheries, estimates of "harvest" by the water export facilities also
18	need to be evaluated in the context of other sources of mortality. In years of high juvenile abundance, density dependent effects may
19	minimize the impact of export losses. For example, even though an estimated 73.380 juveniles were lost during spring 1999 (Nobriga
20	and others 1999), adult abundance later in the year (MWT = 864) was one of the highest recorded since the population declined.
21	Bennett (2005) at 38. Thus, Bennett's example of 1999 shows that even high juvenile salvage
22	was then followed by one of the highest adult abundance measurements—this well-illustrates the
23	variability that occurs between the larval/juvenile and adult life stages of many fish species.
24	///
25	
26	⁵ The FMWT and TNS are used here because, as the BiOp reports, "The Fall Midwater
27	Trawl Survey (FMWT) and the Summer Townet Survey (TNS) are the two longest running IEP fish monitoring programs that are used to index delta smelt abundance." <i>See</i> BiOp at 143 (AR at
28	000158).
	SUPPLEMENTAL DECLARATION OF DR. RICHARD B. DERISO IN SUPPORT OF MOTION FOR PRELIMINARY INJUNCTION Case No. 1:09-CV-0407-OWW-GSA sf-2772528

1 33. I include this explanation because FWS's efforts to establish any correlation 2 between juvenile salvage and subsequent adult abundance (and then trying to control that salvage 3 through OMR flows) ignores the variability at this life stage (a 50-fold variability according to 4 Kimmerer). That the data does not establish such a correlation, as explained through my analyses 5 above, is therefore unsurprising. The large variability could be due to purely natural fluctuations, 6 but it also commends more research on the potential significance of other sources of mortality, 7 such as pollutants and predators.

34. 8 All of the above analyses demonstrate that juvenile salvage does not have a 9 statistically significant negative effect on population growth. This conclusion is consistent with 10 general principles of fish population dynamics, as it is not unusual to see fluctuations in year class 11 abundance caused by factors other than changes in abundance of spawners. This also holds 12 equivalently for eggs, larvae, and juveniles, assuming their abundance is proportional to the 13 abundance of the spawners that produced them. See Hilborn, R. & Walters, C., Quantitative 14 Fisheries Stock Assessment: Choice, Dynamics and Uncertainty, Chapman & Hall at ch. 7 (1992) 15 (citing references).

16

20

21

22

23

24

25

26

27

28

17 I declare under penalty of perjury under the laws of the State of California and the United 18 States that the foregoing is true and correct and that this declaration was executed on December 7, 19 2009 at Del Mar, California.

Kilhad Z

Appendix

Appendix

Appendix 1: Supporting Technical Details to Analyses Described in "Supplemental Declaration of Dr. Richard B. Deriso"

Point 1.

					Population growth rate
	Dec-Mar	FMWT	FMWT		adjusted for
	Average	year-1 (=	year (=		density-
Year	OMR	FMWT_1)	FMWT_0)	In(FMWT_0/FMWT_1)	dependence
1987	-4054.2	212	280	0.278	0.807
1988	-7319.8	280	174	-0.476	0.223
1989	-6647.8	174	366	0.744	1.178
1990	-8313	366	364	-0.005	0.908
1991	-4775	364	689	0.638	1.546
1992	-5037.4	689	156	-1.485	0.233
1993	-5279.8	156	1078	1.933	2.322
1994	-4656.2	1078	102	-2.358	0.331
1995	-3031.5	102	899	2.176	2.431
1996	-1181.7	899	127	-1.957	0.286
1997	10188.7	127	303	0.870	1.186
1998	2046.5	303	420	0.327	1.082
1999	-740.2	420	864	0.721	1.769
2000	-5178.4	864	756	-0.134	2.022
2001	-5558.7	756	603	-0.226	1.660
2002	-7615.3	603	139	-1.467	0.037
2003	-8161.1	139	210	0.413	0.759
2004	-8004.5	210	74	-1.043	-0.519
2005	-5858.4	74	27	-1.008	-0.824
2006	-2975.7	27	41	0.418	0.485

SUMMARY OUTPUT		In(FMWT/FMRT_1)=a+b*(Dec-Mar				
Regression S	Statistics	OMR)+c*FMWT_1				
Multiple R	0.692					
R Square	0.478					
Adjusted R Square	0.417					
Standard Error	0.915					
Observations	20.000					
ANOVA						
	df	SS	MS	F		
Regression	2.000	13.034	6.517	7.792		
Residual	17.000	14.218	0.836			
Total	19.000	27.253				
	Coefficients	Standard Error	t Stat	P-value		
Intercept	1.102	0.377	2.920	0.010		
Dec-Mar OMR	0.000	0.000	1.023	0.321		
FMWT vear-1	-0.002	0.001	-3.705	0.002		

The analysis was made by first applying a logarithmic transformation to the Ricker model to obtain equation (3.33) in Quinn and Deriso (1999), which is then treated as a multiple linear regression equation. The equation applied is shown in the table above. The density-dependent term is statistically significant (P-value = 0.002 is below the 0.05 level). December-March Average OMR is not statistically significant (that is, P-value 0.321 is above the significance level of 0.05).