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SUMMARY 
This paper demonstrates that measurement error can conspire with multicollinearity among explanatory 
variables to mislead an investigator. A causal variable measured with error may be overlooked and its sig- 
nificance transferred to a surrogate. The latter’s significance can then be entirely spurious, in that controlling 
it will not predictably change the response variable. In epidemiological research, such a response may be a 
health outcome. The phenomenon we study is demonstrated through simulation experiments involving non- 
linear regression models. Also, the paper presents the measurement error problem in a theoretical setting. 
The paper concludes by echoing the familiar warning against making conclusions about causality from a 
multiple regression analysis, in this case because of the phenomenon presented in the paper. 
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1. INTRODUCTION 

This paper explores in non-linear regression analysis, the interaction of measurement error and 
multicollinearity. Our simulation studies show how their combined effect can mislead the 
investigator. Causes may be obscured. The wrong explanatory variables may be implicated by 
statistical significance. To be more precise, suppose that in an observational study a causal 
variable x is measured with a large error to yield X .  A second regressor variable w is measured 
with small error as W .  The variables w and x are highly correlated (collinear). The outcome of 
interest is Y .  We show in Section 2 that the variation in Y explained by X can be statistically 
insignificant so that the investigator fails to discover the true role of x. At the same time, s/he may 
well find W to be significant even though that finding would be totally spurious. 

The subject of this paper has been explored for linear regression (Fuller 1987, p. 55). We will 
review results for that case in the next section. 

Our results may be of value to epidemiologists who commonly use non-linear regression in 
observational studies to identify possible causes of adverse health outcomes. We know such 
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investigators cannot prove cause. They cannot rule out the existence of confounding factors when 
they find a statistically significant association between the outcome and an explanatory variable. 
We show in the following that significant association implies the predictability of the outcome 
from that explanatory variable. However, that variable cannot be regarded as a design variable; 
changing its level need not yield a corresponding change in the outcome. For example, reducing 
daily average ground level ozone concentrations may not reduce daily hospital admission counts 
for acute respiratory morbidity; the strong statistical association between ozone levels and such 
hospital admissions (see Burnett and Krewski 1994) are based on observational, not designed 
studies. None the less, such findings would lead us to predict an increase in hospital admissions 
following a natural increase in ozone levels. 

Even a designed study can mislead investigators seeking causal predictions. For example, 
Simpson’s paradox occurs in multi-centre randomized trials of a treatment against a control 
when sample sizes are too small or randomization protocols are too non-uniform (Zidek 1984). 
Investigators may then erroneously conclude from aggregated multi-centre data that the 
treatment will predictably yield better results than the control. 

Yet when they analyse the same data centre by centre, the controls can prove to be superior to 
the treatment in every single case. In observational studies, analogous difficulties due to 
aggregation express themselves through the ecological correlation fallacy (Robinson 1950). 

However, we will not be concerned with that fallacy. Instead we focus on confounding factors, 
the main impediments to proving cause in observational studies. 

In his celebrated example, Charlier showed that over a period of 40 years annual stork 
population totals in Oslo were correlated with the number of human births in that city ( r  = 0.86). 
However, slaughtering storks would not have been an effective method of birth control since the 
true explanation for the association lay in a confounding factor, the size of the human 
population. 

In observational studies, ‘association’, causal or otherwise, may be interpreted in terms of the 
outcome’s predictability. Consider in general, a study population of items with measurable study 
variables; Y represents the measured response, X ,  x, W, w and so on, the regressor variables. The 
latter represent potential causes. They can be related to one another as well as subject to 
measurement errors. 

Now if w were not known, the constant function, E [ g (  Y ) ]  which ignores w would seem to be a 
natural predictor of g( Y ) ,  g denoting a given function; here and in the following, E [  - 1  denotes the 
study population average. However, if w were available we might be able to find a better 
predictor than the constant function. That predictor would have the form h(w) for some h. By 
‘better’ we mean E { [ g (  Y )  - h(w)I2} < E ( { g (  Y )  - E [ g (  Y ) ] } 2 ) .  If there does exist a function g 
having such a better predictor, we call Y and w ‘related’ and otherwise ‘unrelated’. 

We can readily show that being ‘unrefated’ then means, P(w E A ,  Y E B) = P(w E A )  
P( Y E B)  or P( Y E Blw E A )  = P( Y E B) for all events A and B. In probability theory, a pair 
of random variables, w and Y satisfying the last condition are called ‘independent’ and otherwise 
‘dependent’. Note that independence obtains above even if we substitute an arbitrary non- 
negative measure of accuracy, p{ e ,  - } for { . - * }* (provided that p[u, v] = 0 if and only if 
u = v). In non-linear regression, we use the strong concept of predictive association implied by 
stochastic dependence. Indeed in the simulation study of Section 2, Y represents a Poisson count 
and the lack of association with the explanatory variable X will mean P( Y = ylX = xo) = 
P( Y = y )  for all xo. 

When Y represents a continuous outcome, a weaker notion of non-association can be used, 
that requiring the g’s and h’s in the above definition to be linear. We then find that w and Y must 
be ‘uncorrelated‘, i.e. linearly non-related. Except when these variables have a joint normal 
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distribution, linear association and association are not equivalent. 
Between association and linear association are ‘quadratic association’ and a family of other 

types of association. Inexplicably, these intermediate notions of association have not been 
systematically explored. We will not pursue them here. 

2. REVIEW OF RELATED THEORY 

Fuller (1987) gives a comprehensive account of the theory of measurement error for linear 
models. That for non-linear models is under current development. Carroll and Stefanski (1990) 
give an account of that development within the quasi-likelihood framework. Measurement error 
in non-linear regression with random effects has been treated in unpublished work by the authors 
and their co-investigators. They assume small measurement errors and use Taylor expansion 
methods to deal with random cluster effects in a generalized estimating equations framework for 
longitudinal analysis. However, none of the existing theory enables us to accurately assess the 
effect of the phenomenon central to this paper, the combined effect of measurement error and 
multicollinearity. 

The classical measurement error model may be described in the notation of Fuller (1987) by 

Y,  = Po + P I X I  + € 1 ,  Xi = XI + u,, t = 1,. . . , n. (1) 

The { x f }  may be regarded as fixed or random. Often E ,  - NID(0, flee), t = 1,. . . , n and 
u, N NID(0, ouu), t = 1,. . . ,n are assumed. Also, the { u r }  and { x I }  are assumed to be uncorre- 
lated. The data consist of the pairs of measurements made on items drawn from the study 
population: {( Y,,X,) : t = 1 , .  . . , n}. Adopting a common practice, an investigor might fit a 
linear model relating Y,  to X ,  by ignoring the measurement in the explanatory variable. In that 
case s/he would obtain as an estimator for PI, PI = { C ( X ,  - x )*} - ’C(X ,  - x) Y,. We find that 
the estimator is biased when averaged over the distribution described by the sampling model (1) 
which incorporates the measurement errors: 

EP, = KX,Pl.  (2) 

Here K, = ox,/uxx, oxx = oXx + oUu and in general osl represents the study population 
covariance between any two study variables s and t .  Fuller (1987) calls K,, the ‘reliability 
ratio’ which attenuates the regression coefficient. Even though PI has large magnitude, its least 
squares estimator can approach 0 when measurement error is large. 

Measurement error also leads to an attentuation of the squared study population correlation 
between x and Y,  again by the reliability ratio acting linearly. Thus measurement error can lead 
to the failure of an investigation to discover the true relationship between the outcome 
represented by Y and the explanatory variable represented by x when measurement error is 
present. 

The failure of least squares analysis in the presence of measurement error stems technically 
from the non-linearity of fil in the { x r } .  One might ask whether measurement error can be 
similarly misleading in a designed, as opposed to obervational, study. This leads US to the model 
for error proposed by Berkson (1950): 

Y, = Po + pix, + E f , X ,  = XI - u , , l =  1,. . . ,n. (3) 

The experimenter fixes the { X I }  but the { x , }  represent the actual levels at which the experiments 
are run due to uncontrolled variation. The {u f }  and { x , }  satisfy the same conditions as above. 

Formally (1) and (3) look identical. However, they are not the same. Whereas previously the 
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{x,} and {u,}  were uncorrelated, now they are not, and it turns out for the simple models under 
consideration, the investigator will not be mislead. S/he can use the least squares estimator for P1 
obtained by fitting the model Y,  = bo + blX, .  That estimator will be unbiased. 

For more complicated models, for example, those in which dependence on the { X , }  is non- 
linear, this unbiasedness of coefficient estimators no longer obtains. So in summary, investigators 
need to recognize the deleterious nature of measurement error both in design and analysis, where 
in the latter case it may be possible to adjust estimators to obtain approximate unbiasedness at 
least. 

Let us now turn to the central issue of concern in this paper and introduce another regressor 
variable W for which axw # 0 while measurement model (1) holds. Although the co-ordinates of 
W like those of x can be fixed, or a combination of fixed and random, we assume for expository 
simplicity that X ,  x and W are all random. The investigator cannot rule out a priori, the 
possibility that W has an important explanatory role. So s/he would fit the model 
Y, = bo + b l X ,  + b2 W, by least squares. Usually the resulting bl will not be an unbiased 
estimator of PI, but it might be hoped that the fitted coefficient for W would not be significantly 
different from zero. This may well fail to be true also. As Fuller (1987, p. 55) observes: 

‘If theory specifies Y to be a function of x only, x is measured imperfectly by X, and W 
is correiated with x, then the coefficient for Win the multiple regression of Yon Xand 
W is not zero.’ 

To get more insight into the difficulties involved in the situation described in the last 
paragraph, consider the study population coefficients of X and W under the measurement 
model (1) with the added assumption that W is independent of both u and E .  So we regard 
(Y, ,  X,, W,), t = 1, . . . , n as a set of trivariate measurements made on a random sample of items 
drawn from the study population. Then under multivariate normal theory, the conditional 
expectation of Y, given X ,  and W, is, disregarding an additive constant, SW, + y W,; here 

6 = A-’ (ayx - P1742%v) 

Y = -7r22a- ( D Y X  - P l O X X )  
1 

2 A = axX - 7r22aww and 7r22 = aXw/aWW. The least squares estimator will be an unbiased 
estimator of PI if and only if ayx = PlaXx. The last condition holds if and only if y = 0. In 
particular, the condition for unbiasedness cannot obtain under the realistic conditions, 
ac, = a,, = ae, = 0, for then ayx = PloxX while aXx = a,, + a,, so that gYX = Plaxx = 
-PI ouu < 0 for non-negligible measurement error. Consequently 

7 = PPl(~x,/aww)*’2[1 + (1 - ~2)(~xx/~uu)l-1 (4) 

where p denotes the correlation between x and W. Thus, when p = 0, y = 0, but as p -+ 1, y --f 
if W has the same scale as x, i.e. cxXx = aww. The result obtains without regard to the level of 
measurement error and shows that as p -+ 1, W will come to fulfil the role of a surrogate for x. 

Equation (4) reveals something rather unexpected; as measurement error diminishes and 
a,, -+ 0, y -+ 0 whatever be the values of the other parameters in the measurement/sampling 
model. W’s surrogacy role will then be completely lost. 

Corresponding results obtain for the other coefficient 6 defined above, but for brevity these will 
not be presented. Results for more general measurement error models where Y is a continuous 
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response or vector of continuous responses could be developed with the help of the theory 
presented by Fuller (1987). However, we need models like that for Poisson regression where his 
theory proves of no avail. Indeed, existing theory such as Carroll and Stefanski’s cited above, 
tends to be heavily computational. In more complex cases, it seems impossible to obtain the 
qualitative insight we get above for the simplest models. Thus in the next section we turn to 
simulation experiments to gain some insight into the joint effects of multicollinearity and 
measurement error in non-linear regression. 

3. SIMULATION STUDY 

In this section we present simulation results assessing the interaction between errors in variables 
and multicollinearity in Poisson regression. Two latent predictor variables, x and w, are drawn 
from a bivariate normal distribution with zero means, unit variances and correlation p. These two 
variables are observed with error as X = x + u and W = w + v, where u and w are independent 
(of x and w and of each other) and normally distributed with zero means and standard deviations 
uuu and urn, respectively. The response variable Y is Poisson distributed with mean 
exp(ao + a l x )  where a. = 0 and al = 1. For a range of values of p, uuu and urn, we fit four 
Poisson regressions models: 

1. Y on x alone; 
2. Y on the pair (x, w); 
3 .  Y on X alone, and 
4. Y on the pair ( X ,  W ) .  

3.1. Simulation algorithm 

The simulations proceeded as follows: 
1. Fix the values of oVv, cruu and p. 
2. Generate 100 pairs (x,, w,). 
3 .  Generate 100 pairs (u,, w,) and add these to (x~, w,) to obtain ( X l ,  W,). 
4. Generate Poisson counts Y,  with means x,. 
5. Perform Poisson regression of Y assuming 

(a) E( Y )  = exp(a6 + a;.) 
(b) E( Y )  = exp(Po* + P;x + P 2 * 4  
(c) E(  Y )  = exp(ao + a l X )  
( 4  E( Y )  = exp(P0 + PIX + P2 W ) .  
Record the coefficients and the corresponding asymptotic standard errors (based on the 
expected Fisher information adjusted by the scale estimate) from each fit. 

6. Repeat steps 2-5 400 times. 
7. Change p and repeat steps 2-6. 
8.  Change uUu and repeat steps 2-7. 
9. Change u, and repeat steps 2-8. 

10. From each set of 400 replicate fits, compute the mean, sample standard error, and mean 

The algorithm was implemented in S-plus with model fits obtained using the ‘Giim’ function. 
asymptotic standard error for each coefficient. 

3.2. Simulation results 

Results from our regressions on the true predictor values agreed with theory and will not be 
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presented. The following results seem more instructive. 
Figure 1 displays the means for Cil, 6, and j2 computed from each set of 400 replicate fits as a 

function of LT,, for values of p of 0 , 0 5  or 0 9  and u, = 0 (no error in w)  or u, = 1 (large error in w). 
Figures 2 and 3 display the corresponding sample and asymptotic standard errors for 

Observe the well-known phenomenon of 6,'s attenuation due to error in x. The theoretical 
value of a I  is 1 .  As the error in measuring x increases (and CT,, increases away from 0 towards its 
maximum value of 1 in our study), the value of al decreases. The analyst would see that value 
declining in significance and eventually (beyond the range of our plots) the error bands (plotted in 
Figure 1) would encompass 0. At that point, the analyst would conclude that x did not 
significantly explain Y ' s  variation even though we know that in this simulation study at least, 

and b2. 
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Figure 1 .  Averages with error bands for 400 non-linear regression coefficient estimates (aI 0, PI 0, Pz A) from samples of 
size 100 obtained under various levels ofmeasurement error and multicollinearity: (a)  p = 0, ~ ( v )  = 0; (b) p = 0, a(w) = 1; 

(c) p = 0.5, a(.) = 0; ( d )  p = 0.5, o(w) = 1; (e )  p = 0.9, a(.) = 0; (f) p = 0.9, a(w) = 1 
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variation in x actually causes the broad scale variation in Y .  
Our next observation concerns the anticipated transfer of effects from ,6l to j 2  due to p. Notice 

in Figure 1 that as p increases from 0 to 0.9, the value of $2 increases for any given level of 
measurement error in x. By the time the correlation between x and w, p, reaches 0-9, the paths 
traced out by the p s  with changing cuu have crossed. Now /32 has come to dominate /31 even 
though the association between w and Y ,  like that between storks and babies mentioned in the 
introduction, is completely spurious. 

For this transfer of apparent causality to occur, we need a high dose of both measurement 
error in x and association between x and w. Again looking at Figure 1, we see that at a value of 
p = 0.5 the paths referred to in the last paragraph only contact each other when the error in 

x 
0.2 0.4 0.6 0.8 1.0 
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( c )  

8 0  
A 

0.2 

0 
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2 s  
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( d )  

I j.. 
0.8 1.0 

Figure 2. Standard errors (sample 0, average asymptotic A )  for obtained from 400 non-linear regressions with samples 
of size 100 under various levels of measurement error and multicollinearity: (a) p = 0, u(v) = 0; (b) p = 0, U ( V )  = 1; (c) 

p = 0.5, U ( V )  = 0; ( d )  p = 0.5, U ( V )  = 1; ( e )  p = 0.9, u(v) = 0; (f) p = 0.9, U ( V )  = 1 
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measuring x approaches 100 per cent of the simulated variation of x itself. 
However, the analyst would come to see w as significant long before that extreme level of 

measurement error is seen. The error band for ,B2 ceases to include 0 by the time the level of ~ 7 , ~ ~  

has reached about 0.4; again the analyst would be deceived by the effect of measurement error 
into making an incorrect conclusion. 

Figure 1 shows that the transfer-of-causality effect noted above is mitigated when w also 
becomes subject to error. The growth in the significance of P2’s estimate as a function of the error 
in x’s measurement is retarded. However, it perversely ‘borrows from strength’ and exploits its 
strong association with the true cause of Y’s variation, x, to become strongly significant even 
when cuVv = 1, when the error in x is large. 

2 0 0 0  
A A A  

0 

Figure 3. Standard errors (sample 0, average asymptotic A)  for 02 obtained from 400 non-linear regressions with samples 
of size 100 under various levels of measurement error and multicollinearity: (a)  p = 0, u(u) = 0; ( b )  p = 0, u(u) = 1; (c) 

p = 0.5, u(v) = 0; ( d )  p = 0.5, U ( V )  = 1; ( e )  p = 0.9, u(u) = 0; (f) p = 0.9, O ( V )  = 1 
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An issue which has not been extensively studied in the theory of errors in variables concerns the 
effect of such errors on the error bands used to assess the significance of various effects. 
Asymptotic standard errors (SEs) may be used uncritically in the belief that the large sample 
estimates of these SEs will provide reasonable measures of the true uncertainty about the 
unknown values of the p’s. We investigated the value of these SEs in our simulation study by 
computing the actual SDs of the simulated ,&values. That enabled us to compare these SDs with 
their theoretical counterparts and see the effects of measurement error and multicollinearity. 

Looking at Figures 2 and 3 we see one well-known effect of multicollinearity, the inflation of 
the SEs, both theoretical and empirical. When p = 0.9 and w is accurately measured, the inflation 
in the standard errors becomes large for both P-estimators when there is no measurement error. 
In fact they are almost double their values for p = 0 (0.2 versus 0.1). 

An initially surprising phenomenon occurs when the variables are measured with error and p is 
large: the SEs come down toward their ‘correct’ levels. Here measurement error has actually 
favoured the analyst. 

We can easily explain this phenomenon on intuitive grounds. Measurement error helps spread 
out the observed values of X and W .  This increases the apparent reliability of the fit. If two points 
are widely separated, the slope of a line drawn through them will be predictable. The 
corresponding slope will not be very well-defined when these points are close together. 

However, the phenomenon disappears when w is measured with error. Thus multicollinearity 
impacts on the SE for PI only when the surrogate variable is accurately measured. So again, 
measurement error proves to be the investigator’s friend. 

In contrast to the situation described above, when p is small, measurement error has 
comparatively little effect. However, Figures 2 and 3 do show that the theoretical SE under- 
estimates the true SEs. While the difference is generally not dramatic, it can become rather large 
when measurement error becomes large. The investigator relying on estimates of the SE from 
asymptotic theory could well mistakenly report a significant finding. 

More worrying, perhaps, is what our figures do not tell us. Even our extremely simple 
experiment in non-linear regression demonstrates the rich variety of anomalies which can arise 
from the interaction of measurement error and multicollinearity. What might happen in a real 
experiment involving a score of explanatory variables with varying levels of measurement error 
and multicollinearity? 

4. DISCUSSION 

We have discussed measurement error in both theoretical and empirical settings. We have 
described a phenomenon that can arise in regression analysis when explanatory variables are 
correlated and measured with error. Significance can be transferred from causal explanatory 
variables to surrogates having only a spurious association with the response variable. Controlling 
these surrogates would not have the effect on the response expected from controlling its causes. 

The authors were motivated to study this phenomenon by the results of an epidemiological 
investigation. We were looking for the potential asociation between air pollution and respiratory 
morbidity and used non-linear regression with longitudinal data. 

Our as yet unpublished reanalysis of that presented by Burnett et al. (1994) shows that while 
SO4 was strongly associated with daily hospital admissions for acute respiratory ailments, SO2 
was not. We knew these two airborne pollutants were correlated. Could ‘measurement’ error 
have obscured the real significance of SO2 and multicollinearity have transferred that significance 

Most of the daily and monthly values used in our epidemiological study were interpolated from 
to SO,? 
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a few fixed monitoring sites down to the level of individual census subdivisions in Southern 
Ontario. Le et al. (1994) develop the methodology used. We were attempting to infer the values 
which would have been measured if an ambient monitoring station had been present. Inter- 
polation error assumed the role of measurement error, given the way the interpolants were used 
in our investigation. 

The accuracy of the interpolator has been empirically assessed using cross-validation studies 
(Sun 1994 and unpublished work of Le, Sun, Zidek and Burnett). In these studies, the (detrended, 
deseasonalized and log transformed) data from each monitor was removed, successively, one 
monitor at a time. The interpolator then used the corresponding data from the remaining 
monitors to infer the time series of values for the missing monitor. 

The values so imputed at all times could be compared with the deleted (‘correct’) values and the 
mean squared interpolation errors (MSEs) computed. These MSEs vary from station to station. 
The location of some stations in relation to the rest makes their values easier to predict. Their 
MSEs are small. 

The MSE over all stations and days turned out to be 0.71 for SO2 compared with 0.64 for SO4. 
The estimated variances for these pollutants are, respectively, 1-38 and 1.35. Thus the error- 
standard-deviation/standard-deviation ratio for these two transformed pollutants are 0.5 1 and 
0.47, respectively. Using data from ambient monitoring stations, Sun (1994) found the correla- 
tions between the daily values of SO2 and SO4 to be 0.12. These results, taken in conjunction with 
the simulation study of the last section, increase our confidence in the significance we attributed 

An important measurement error problem arises in epidemiologic air pollution studies when 
ambient monitors (AMs) are used as surrogates for personal monitors (PMs). As Suh et al. (1992) 
observe 

to SO& 

‘Epidemiologic air pollution studies, . . . , typically use air pollutant measurements 
collected from a stationary ambient monitor to reflect exposures for surrounding 
populations, often for entire communities.’ 

They conclude that 

‘. . . personal exposure estimates based on ambient concentrations alone may result in 
substantial misclassification of the exposure status of individuals.’ 

Information on AM to PM error levels seems fragmentary at best. Measurement errors in PMs 
themselves would seem negligible, at least for SO2 and SO4 among other pollutants (Koutrakis et 
al. 1988; Brauer et al. 1989; Suh et al. 1992). Also, SO4 levels observed at a single regional AM 
predict those at microenvironmental monitors (MMs) with negligible error (Suh et al. 1992). So 
errors entailed in the use of AM measurements of SO4 to predict PM measurements can be 
assessed by comparing the MM to PM levels in field studies. Suh et al. make this comparison. 

From Figure 9 in Suh et al. we see that the MM levels of SO4 are upwardly biased predictors of 
PM levels. That bias can be removed by regressing the PM levels on the MM levels so as to 
‘recalibrate’ the latter. Suh et al. do that regression giving us the recalibrator: 
PM = 9.03 + 0.69 MM(nmoles/m3). Since r2 = 0.80 and the (geometric) standard deviation of 
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the observed PM levels is sPM = 1.8 nmoles/m3), we can infer the size of the ‘measurement error’ 
as (1  - r2)”2~pM = 0.8l(nmoles/m ). We can also infer the standard deviation of the recali- 
brated MM levels using estimates published by Suh et al.: ( 0 . 6 9 ) ~ ~ ~  = 1.31(nmoles/m3). The 
ratio 0-81/1-31 = 0.62 would play the role of a, = sd(w) introduced in our simulation study. 

Undoubtedly, AM to PM measurements of SOz, a primary pollutant, cannot be assessed 
through MM levels. However, we have no information on SOz related to this issue. Nor have we 
the correlation between PM levels for SO2 and SO4. Thus we cannot fully investigate in this 
context the impact of the phenomenon addressed in this paper. 

We hope this discussion nevertheless illuminates some of the measurement error issues 
arising in monitoring air pollution. Also, it suggests the need for further study, and for 
improved design along with methods of analysis. Measurement error working in conjunction 
with multicollinearity can seriously mislead the analyst into erroneous conclusions. 

Our results warn us anew of the importance in epidemiological investigations of careful 
experimental design with due regard to the management of data quality. No simple after- 
sampling solution exists for the problem posed by the issues we have identified in this paper, but it 
cannot be ignored. 

I 
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