

Environmental

Protection

California Regional Water Quality Control Board

Central Valley Region

Karl E. Longley, ScD, P.E., Chair

Sacramento Main Office 11020 Sun Center Drive #200, Rancho Cordova, California #6600 @IPAL UTILITIES Phone (916) 464-3291 • FAX (916) 464-4645 http://www.waterboards.ca.gov/centralvalley

Arnold Schwarzenegger *Governor*

2007 JUN 21 P 3: 3.9

20 June 2007

Mark Madison, Director Department of Municipal Utilities City of Stockton Regional Wastewater Control Facility 2500 Navy Drive Stockton, CA. 95206-1191

HIGH FISH MORTALITY NEAR STOCKTON REGIONAL WASTEWATER CONTROL FACILITY DISCHARGE LOCATION, SAN JOAQUIN COUNTY

Please find attached the Regional Water Board Inspection Report for 22 May 2007. Currently, our investigation into the high fish mortality event near the Stockton Regional Wastewater Control Facility discharge location has not lead to evidence of a link between a specific event at the facility and the fish mortality event. Please call me at (916) 464-4623 if you have any questions.

PATRICIA LEARY () Senior Water Resource Control Engineer NPDES Compliance and Enforcement Unit

Enclosure: Inspection Report for City of Stockton Regional Wastewater Control Facility

cc: Bruce Herbold, U.S. EPA, Region 9, San Francisco

Ken Greenberg, U.S. EPA, Region 9, San Francisco

Jeff McLain, U.S. Fish and Wildlife Service, Sacramento

Maria Reyes, National Marine Fisheries Service, Sacramento

Diane Riddle, State Water Resources Control Board, Division of Water Rights, Sacramento

Mark Bradley, State Water Resources Control Board, Office of Enforcement, Sacramento Karen Larsen, Regional Water Quality Control Board, Sacramento

Lt. Hector Orozco, Department of Fish and Game, Region 2, Rancho Cordova Warden Lori Oldfather, Department of Fish and Game, Region 2, Rancho Cordova Dave Vogel, Natural Resource Scientists, Inc., Red Bluff Bill Jennings, California Sportfishing Protection Alliance, Stockton

CITY OF STOCKTON

California Environmental Protection Agency

EXHIBIT 5

CENTRAL VALLEY QUALITY CONTROL BOARD

INSPECTION REPORT

REGIONAL WATER

20 June 2007

DISCHARGER: City of Stockton Regional Wastewater Control Facility

LOCATION & COUNTY: 2500 Navy Drive Stockton, CA. 95206-1191 San Joaquin County

CONTACT(S): Fermin Garcia, Chief Plant Operator; and Greg White, Director of Wastewater Operations for OMI/Thames Water

INSPECTION DATE: 22 May 2007

INSPECTED BY: Patricia Leary, Ann Hopkinson, and Spencer Joplin, Regional Water Board

ACCOMPANIED BY: Lori Oldfather and Lt. Hector Orozco, Department of Fish and Game

BACKGROUND:

The Vernalis Adaptive Management Plan, or VAMP, started in 2000 as part of the State Water Resources Control Board Decision 1641. It is a large-scale, multi-agency, long-term experimental/management program designed to protect juvenile Chinook salmon migrating from the San Joaquin River through the Sacramento-San Joaquin Delta. During the 2007 VAMP, when pulse flows were provided in the San Joaquin River, a pilot study was conducted by releasing 800 juvenile fall Chinook salmon with surgically-implanted, individually identifiable acoustic transmitters (tags) at various locations in the San Joaquin River and Delta. The fish movements were subsequently monitored with acoustic receivers. On or about 17 May 2007, a scientist found 116 acoustic tags approximately 1.7 miles upstream of the Stockton Deep Water Ship Channel, adjacent to a railroad bridge and the Stockton Regional Wastewater Control Facility outfall. The lack of movement of the tags suggested that fish mortality occurred at that location. No dead fish were located, and no reports of any fish kills in the area were received from any other parties. Regional Water Board staff inspected the Stockton Regional Wastewater Control Facility on 22 May 2007, accompanied by two wardens from the Department of Fish and Game, to evaluate if effluent discharges might have caused or contributed to the reported incident.

OBSERVATIONS AND COMMENTS:

Operation logs, plant monitoring data, and Supervisory Control and Data Acquisition (SCADA) continuous readouts from computer software used to monitor plant operations were collected for the period from 11 May through 17 May. Data indicated that pH, dissolved oxygen, turbidity, and chlorine readings were compliant with permit requirements. Although the SCADA readouts showed several plant start-ups and shut-downs, the facility utilized its ponds instead of discharging during these events.

Final effluent data from 1 May through 20 May 2007 are provided in Attachment 1. Six effluent ammonia measurements were recorded during this time interval. These are provided in Table 1 along with the result for a grab sample of effluent collected by staff during the 22 May inspection. Concentrations of ammonia varied from 2.9 to 11 mg/L as N. Daily maximum pH ranged from 6.5 to 7.9. The data points were compared to the Criteria Maximum Concentration (CMC) for protection of salmonid fish; which is a 1-hour aquatic exposure acute criterion. Of the seven ammonia measurements, one exceedance of the CMC water quality limit occurred on 7 May, when the concentration of ammonia exceeded the CMC by 0.33 mg/L as N. However, some of the tagged fish were not released until 11 May 2007, so the data does not support that ammonia toxicity caused fish mortality.

· Date	Day Max pH	Ammonia [mg/L as N]	*CMC [mg/L as N]
5/4/2007	6.8	11	28
5/7/2007	7.9	7.1	6.77
5/9/2007	6.6	6.7	31.3
5/11/2007	6.7	6.7	29.8
5/14/2007	7	5.2	24.1
5/16/2007	6.7	2.9	29.8
5/22/2007	6.5	4.4	32.6

Table 1. Stockton RWCF Final Effluent Characteristics

Reference: * Regional Water Quality Control Board, Water Quality Goals, August 2003.

A standard Flow-Thru Bioassay to measure acute toxicity was conducted as part of plant permit requirements from 14 May to 18 May and resulted in a 95% survival rate for the fathead minnow in the plant effluent. A chronic toxicity test for *Selanastrum* conducted on 14 May resulted in no toxicity. At the inspection we requested that additional chronic toxicity testing be conducted as soon as possible. OMI agreed to collect samples and run another set of tests for the fathead minnow and *C. dubia*. Chronic toxicity tests for samples collected from 24 May to 31 May resulted in no measured toxicity for either survival or growth of fathead minnows, or for survival and reproduction for *C. dubia*.

The facility had experienced one Special Plant Accommodation (SPA) on 15 May. The SPA, provided in Attachment 2, implemented a plan to deviate from normal plant operations at the tertiary facility. The SPA indicates a start date on 15 May and a finish date of 17 May. However, Fermin Garcia, Chief Plant Operator, stated the SPA lasted only a brief time on 15 May with no unusual occurrences.

VAMP flows for the San Joaquin River from 11 May to 9 June were recorded by the USGS's flow measurement station and provided in Figure 1. The May VAMP flows oscillated around the 2000 cubic feet per second range with very limited flow in the negative range. For this discharge flow, tidal reversals are minimal; however, flows in the river periodically stop during each tidal cycle.

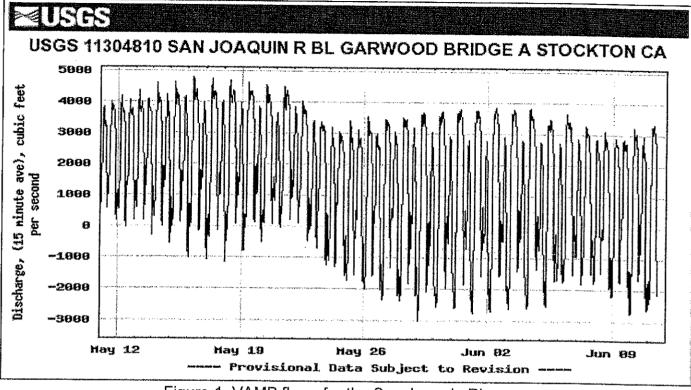


Figure 1. VAMP flows for the San Joaquin River

SUMMARY:

Although the matter is still under investigation, no strong evidence has been found at this time to link a specific event at the facility with the fish mortality event. The facility has been adjusting the operation of the ponds, wetlands, and biofiltration units in order to improve ammonia removal. These units are not meeting the final effluent limitations for ammonia (2 mg/L, monthly average; and 5 mg/L, daily maximum) that will be enforceable on 10 August 2008 as illustrated by the fluctuation in ammonia concentrations in the final effluent provided in Table 1. There are no indications of acute or chronic toxicity in the plant effluent during two separate sets of tests around the timeframe of the fish mortality event. Lastly, the VAMP flows remained in a primarily positive range creating a flow with stops and starts, but no significant reversals of flow direction.

Approved:	PHC

Ann M. Hopkihson

Water Resource Control Engineer

Count	Min 1144	Max 1144	 Sum	31 Thu	30 Wed	lue		Mon	27 Sun	26 Sat	25 Fri	24 Thu	23 Wed	22 Tue	21 Mon	Sun	19 Sat	Ŧ.	17 Thu	Wed	15 Tue	14 Mon	13 Sun	Sat	11 Fri	ากม		08 Tue 1144	Won	06 Sun	Sat		Thu	Ned	01 Tue	uMHO/cm	May 00095 003
2.	2.8																					2.8							2.9					1		mg/L	00310
Q 12.0		9 2.3																		<2.0			<2.0	<2.0	2.3	AC	~2.0	AE		<2.0	~2.0	<2.0	<2.0	AC	AC	i	00312
0 17.0		6./														6.5	6	6							6.6							6.7		AC	AC	Day Avg. SU (SCADA)	nH FIELD
				+-													6.6							6.7						0.6						S.U. (SCADA)	pH pH pH Day Min.
17.0 1.																					6.3	ļ			0.5									AC		S.U. (SCADA	pH Day Min.
17.0									-							6.4	. ir			. <u>i</u>				U U									u cr				ALK CACO3
	N 27																				<u> </u>		× ~	×.	<u>+</u>						2 K	2	K			ngn	
		n -	7				-														*	1.0						2									0%0
0.0		(-			-														_ <u> </u> £	- k						-	mg/L	Total N

ATTACHMENT 1

Stockton RWCF

Stockton RWCF Final Effluent

- 4 -

Page
ы

Count	NIN		VCW V	Ava	Sum	31 I hu	30 Wed	60 I I G	DR Mon	27 Sun	26 Sat	25 Fri	24 Thu	23 Wed	22 Tue	21 Mon	20 Sun	19 Sat		nul /1	10 Wed	15 lue	14 Mon	13 Sun	12 Sat	11 5 0		09 Wed	08 Tue	07 Mon	06 Sun	05 Sat	04 Fri	03 Thu	Da Med	01 Tue		2007	May	
																																					119/L		May 00605 00	fineff
0.0	5.2	17.0	1	8												-					2.9		5.2			6.7		6.7		7.1			11.0						00610	fineff
0.00																							2Z							AZ							Hig/L		00615	fineff
0.00																							AZ							AZ							1)jij/L	N CON	00620	fineff
																1													AZ								nig/L	INAKUNESS	00900	Tineff
	11.40	32.70	20.00	00 00	452.20												23.30	23.30	22.70	26.70	28.40	17.30	27.90	32.20	32.30	28.60	AC	11.40	31.30	31.70	32.60	32.70	31.20	18.60	AC	AC			50050	fineff
2	638	662	nco	6772		-																662							638								тığır		70300	fineff
170	<0.1		-0-1	2											-		<u>6</u> .1	-0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	AC	<0.1	<0.1	6	<0,1	<0.1	6.1	<0.1	. AC	AC	ШЦГ		70348	finett
	. 62.6		1.89																			70.0	71.2	69.1	68.9									64.9			Deg F (SCADA)	Temp, (Calc)	00011A	fineff
4	6.6	9.0															8	8.4	8.7	6.6	8		8.6				-		8.2		7.6				AO) (SCADA)			fineff Effluent

....

Stockton RWCF

4

Stockton RWCF Final Effluent

Count	Min	Max	Avg	Sum	31 Thu	30 Wed	29 I Ue	28 MOD	2/ Sun	26 Sat	24 I NU	23 Wed	22 Tue	21 Mon	20 Sun	19 Sat	18 Fri	17 Thu	16 Wed	15 Tue	14 Mon	13 Sun	12 Sat	11 Fri	10 Thu	09 Wed	08 Tue	07 Mon	06 Sun	05 Sat	04 Fri	03 Thu	02 Wed	01 Tue		May	!
17.0	17	23.3	20												21.3					21.1								21.	18.6	17.0	17.2	18.3			Day Avg Deg C (SCADA	00010A	
.0 17.0													_		3 20.5		9 20.3		9 19.6					20.1			2 21.6) 16.1	16.3			AC	Day Avg Daily Minimum Daily Maximum Deg C (SCADA)Deg C (SCADA)Deg C (SCADA)	Nooo10 Temp.	fineff
.0 17.0		8 24.2													5 22.2		•	21.8		6 22.1						24.2								AG	Daily Minimum Daily Maximum Deg C (SCADA)Deg C (SCADA)	X00010	fineff
									-		 _					2 +2		1.00		<u>,</u>		4	S A				114							; ; ;		G00410 ALK, GRAB	fineff
1	114							-							1.1	0.8		1.4	1.3		1	1.6	 	1.9	AC	0.7					1.4	.2.9	1		NTU (SCADA	TURBIDITY Day Avg	FINEFF
<u>17.9 17.9</u>		2.0									 																						AC) NTU (SCADA)	TURBIDI I Y Dayily Min.	FINETT
<u>, 1</u>		1.4 5.0	_													2.0																2. I			NTU (SCAL	Daily Max.	רוועברר
	21.5																																				

Stockton RWCF

ATTACHMENT 2

S	PECIAL PLANT AC	COMMODAT	IONS (SI	PA)	OMI Thames Wate
	lank form updated May 10, 20		(
	PROJECT NAME	Aain Plant Upgrade -	SCADA	SPA No. 8L	ICI WW32
	DATE SPA INITIATED	SPA NAME	······		
	May 9, 2007	Modify PLCs for f	ow pacing, G	BT quantities, etc	
	START DATE	FINISH DATE		Duration	
	May 15, 2007	May 17, 2007		Intermittently thr	ough 3 days
	CLEARANCE REQUIRED		ACCESS A	LTERATION	
	no 	A		·	
	POTENTIAL FOR SPILL Y IF YES, ATTACH SPILL P		POTENTIA	L SPILL MATERIAI	[.
	CCI/THAMES CONSTRU	CTION MANAGER	CELL PHO		
	Dick Richardson CONTRACTORS AND CC	NTACT PERSONS*	916 496 76 MCC Conti	······································	PHONE
	Max Hanson				4 9221
	IMPACT TO PLANT Ter	tiary plant will be shut	down for half	an hour from 9 a.m.	Tuesday May 15 th
	and will then be on recycle 1 ANY POTENTIAL FOR RI			MITIGATED - Opsil	
	Mitigated	SR 10 COM DIANC		Million Lo - Ope	W Julia
	WORK TO BE PERFORME	D BY CONTRACTOR	S: MCC Con	trol Systems ("Meyer	7) ///
1		it down wetlands pump			
	and add firmware.	half an hour. NBTs ma	iy be left on re	ecycle if hecessary. Si	nia down PLC 23
	Ask Operators to bri	ng plant back into actio			
1		ow level protection of a	ecycle pumps	(and may necessitate	shutting off
	NBTs). 3. Add level control sy	stem that will vary wet	lands nump st	ation flow to match re	w water numns
		w water channel at lev			in vicioi pumpo
		ask Operators to resum			inel. Test and
		rol system, which coul off PLC 21 at GBTs fo			
		odifications to PLC 9			ze flow data from
	the GBTs. Adjust Pa	neiview, which will tal	e it off line fo	or only a few minutes,	
·		g ask Operations to ru			erify that the
ļ	WORK TO BE PERFORME	tion is happening at PL		esters,	
Í	I Shut down the tertial	y plant Tuesday morni	ng from 9 a.m	, for half an hour.	
		ied work on PLC 23, a			recycle, leaving
1	the wetlands pumps	off and the inlet valves	closed. If pre	ferred the recycle pun	nps, fans and
		d be run under local co	ntrol to keep t	hom in service. There	would not be
- 1		for the recycle pumps, red with PLC 22, resum	e flaw throw	the wetlands and se	ork with him to
		system with various flo			
	water channel level s	et points, which could	take 3 or 4 ho	urs.	
- 1	4. On Wednesday Max	will need PLC 21 at th	e GBTs shut e	off for half an hour to	add firmware.
		id-morning run a GBT			

Page 1 of 2

.

۰.

COMMENTS - ANY OPERATIONS TRAINING NEEDED?	will be different & Dest COP will be
Yes, as control of flows through wetlands and wetlands pumps provided before Tuesday on how the wetlands pumps will adjust	will be different. A Dran SOF will be themselves to maintain the level in the
raw water channel as long as they have enough water available	from the wetlands. Operators will also
need to observe the new indicator of flow from the GBTs that w	vill be on the digesters Panelview, PLC
OPERATIONS*	DATE 5/10/07
Director of Operations (Greg White)	
MAINTENANCE*	DATE STIA (57
Maintenance Supervisor (Richard Saha)	110101
ENGINEERING Approved by phone by t	DATE - 10/2002
Project Engineer or General Superintendent Chauter of	
$I \rightarrow P IV to P ANT LIAIS()N*$	DATE 5/10/2007
Director of Asset Management (Malcolm McLeatt)	
cc above * persons and Fermin Garcia, Paul Muirhead, Main	Plant Control Room, Tertiary Control
Room, Neil Gittens, Dick Richardson File/Eng,	

Page 2 of 2