### Public Workshop 2nd Revised Draft Initial Biological Goals

for the Lower San Joaquin River Bay-Delta Plan Implementation



#### Division of Water Rights, May 3, 2023, Item #9

### Agenda

- Introduction
- Staff Presentation
  - Background
  - Principles for the Development of Biological Goals
  - Biological Goals
- Public Comments
- Next Steps

2

### Background

- Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta (Bay-Delta Plan)
- 2018 Update Lower San Joaquin River (LSJR) Flows
  - February June: narrative & numeric objectives
  - **Tributary Flows:** 40 percent of unimpaired flow, adaptive range of 30 50 percent, from each of the Stanislaus, Tuolumne, and Merced Rivers
  - Minimum Base Flow: 1,000 cfs, adaptive range of 800 1,200 cfs on LSJR at Vernalis
- Program of Implementation for LSJR flows
  - Stanislaus, Tuolumne, and Merced (STM) Working Group
  - Biological Goals
- 2019 Draft Biological Goals released for public comment
- 2022 Revised Draft Initial Biological Goals released for public comment
  - August 4, 2022, Technical Workshop
- 2023 2<sup>nd</sup> Revised Draft Initial Biological Goals released for public comment

### Background

• 2018 Bay-Delta Plan: requires biological goals for LSJR salmonids

#### Biological Goals

- Quantitative metrics to assess progress toward achieving fish and wildlife narrative objectives, including complementary activities in the watershed e.g., hatchery reforms, habitat restoration, or predator reduction
- Used to inform: adaptive methods, San Joaquin River Monitoring and Evaluation Program, evaluation of effectiveness of program of implementation, and future changes to Bay-Delta Plan
- Biological Goals <u>not</u> intended to assess water right holders' compliance with the Bay-Delta Plan
- Stanislaus, Tuolumne, and Merced (STM) Working Group
  - STM Working Group established to assist with the implementation, monitoring, and effectiveness assessment of LSJR flows
  - Board will seek recommendations on biological goals from STM and others
  - Four STM Working Group meetings from November 2022 April 2023

### Background – STM Working Group

- California Department of Fish & Wildlife
- Central Sierra Environmental Resource Center
- Department of the Interior, US Bureau of Reclamation
- Merced Irrigation District
- Merced River Conservation Committee
- Modesto Irrigation District
- National Marine Fisheries Service
- Oakdale Irrigation District
- San Francisco Baykeeper
- San Francisco Public Utilities Commission
- Santa Rosa Rancheria Tachi Yokut Tribe

- South San Joaquin Irrigation District
- Stanford University
- State Water Board
- Stockton East Water District
- The Nature Conservancy
- Tuolumne Utilities District
- Tuolumne County Water Agency
- Turlock Irrigation District
- US Fish & Wildlife Service
- Unaffiliated William Martin
- Unaffiliated Richard Morat
- Valley Water

# Principles for the Development of Biological Goals

- Science-based
- Existing legal requirements (Central Valley Project Improvement Act, Fish and Game Code, and Bay-Delta Plan salmon protection objective)
- Specific, Measurable, Achievable, Quantitative, Resultsfocused, Time-bound (SMART)
- Goals were developed to assess Viable Salmonid Population (VSP) parameters
- Goals were specifically developed for LSJR salmon as an indicator of watershed health

# Principles for the Development of Biological Goals

- 2019 Delta Science Program Independent Science Advisory Panel (ISAP) Report
- Other efforts to develop biological goals (Scientific Evaluation Process, Bay-Delta Conservation Plan efforts, Collaborative Science and Adaptive Management Program efforts)
- Goals will be reassessed as additional information is collected using an adaptive management approach, at least every 5 years

### Initial Biological Goals for Fall-run Chinook Salmon

- VSP Parameters: Key indicators of salmon population viability
  - Abundance: Escapement
  - Productivity: Cohort Replacement Rates, Juvenile Survival, Juvenile Production
  - Diversity: Proportion of Hatchery Origin Spawners, Emigration Timing, Emigration Size Classes
  - Spatial Structure: Population Distribution

### **Role of Biological Goals**

#### Table 1.1. Role and Use of Biological Goals

| <ul> <li>Role of Biological Goal</li> <li>Approving adaptive implementation adjustments due to expected or documented achievement, or furtherance of achievement, of goals, including:</li> <li>Change in required percent of unimpaired flow within the range of 30– 50%</li> <li>Alternative flow schedule based on total 5-month volume</li> </ul> | <ul> <li>Biological Goal/Goal Component</li> <li>Juvenile egg to confluence survival</li> <li>Juvenile emigration timing at tributary confluence</li> <li>Juvenile size class migration at tributary confluence</li> <li>Juvenile production at tributary confluence</li> </ul> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Alternative now schedule based on total 5-month volume equal to the required percent of unimpaired flow (flow budget)</li> <li>Shift some of the flow budget to July– January</li> </ul>                                                                                                                                                     |                                                                                                                                                                                                                                                                                 |
| Inform potential water diversion, water right, water quality, or<br>other actions in the mainstem San Joaquin River and Delta to<br>protect flows and habitat provided by LSJR flows or actions by<br>other entities in furtherance of achieving the LSJR narrative<br>flow or salmon protection objectives                                           | <ul> <li>Juvenile LSJR survival at Mossdale</li> <li>Juvenile survival Mossdale to Chipps Island</li> <li>Juvenile egg to confluence survival</li> </ul>                                                                                                                        |
| Inform adaptive methods to the extent that ability to reach goals is related to adaptive methods                                                                                                                                                                                                                                                      | All biological goals                                                                                                                                                                                                                                                            |
| Evaluate effectiveness of program of implementation                                                                                                                                                                                                                                                                                                   | All biological goals                                                                                                                                                                                                                                                            |
| Evaluate effectiveness of SJRMEP<br>Inform future changes to the Bay-Delta Plan                                                                                                                                                                                                                                                                       | <ul><li>All biological goals</li><li>All biological goals</li></ul>                                                                                                                                                                                                             |

#### Abundance

- Population abundance is an important determinant of risk, and large populations have lower risk of extinction and are more resilient
- Based on escapement numbers (i.e., fish that return to reproduce)
- Escapement goals are quantitatively linked to the productivity goals and the salmon protection objective
- Only includes contributions of natural origin spawner escapement

#### **Abundance Goal**

#### Table 3.1. LSJR Fall-Run Chinook Salmon Escapement Goals

| <u>River</u><br>All | Escapement Goal, measured as a<br>5-Year Running Average<br>Positive generational trend in<br>escapement, measured as a 5-<br>year geometric mean | Progress Assessment/Attainment Target<br>Assessed annually/when numeric abundance<br>goals are met |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Stanislaus River    | 7,800                                                                                                                                             | Assessed annually/Year 15 achieve the goal                                                         |
| Tuolumne River      | 15,500                                                                                                                                            | Assessed annually/Year 25 achieve the goal                                                         |
| Merced River        | 7,300                                                                                                                                             | Assessed annually/Year 15 achieve the goal                                                         |

### Productivity

- The population growth rate of a species and an indicator of how well the population replaces itself
- Full life cycle
  - Cohort Replacement Rate (CRR)
- Juvenile productivity
  - Juvenile survival
  - Juvenile production

### **Productivity Goal**

#### Table 3.2. LSJR Fall-Run Chinook Salmon Full Life Cycle Productivity Goals

| Productivity<br>Metric | Goal, measured as a 5-year geometric<br>mean                                                  | Progress<br>Assessment/Attainment<br>Target                     |
|------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| CRR Trend              | Positive generational trend until a CRR<br>> 1 is met                                         | Assessed annually/when<br>numeric productivity goals<br>are met |
| Pre-Fishing CRR        | Pre-Fishing CRR > 1 and > post-fishing<br>CRR until abundance goals met and then<br>sustained | Assessed annually/Year<br>10, achieve the goal                  |
| Post-Fishing CRR       | Post-Fishing CRR > 1 until abundance<br>goals met and then sustained CRR > 1                  | Assessed annually/Year<br>10, achieve the goal                  |

### **Productivity Goal**

#### Table 3.3. LSJR Fall-Run Chinook Salmon Juvenile Survival Goals

| Productivity Metric                                                  | Goal, measured as a 5-year geometric<br>year                                                               | Progress Assessment/<br>Attainment Target          |
|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Juvenile Productivity Trend                                          | Positive trend in juvenile survival<br>until abundance goal is met,<br>measured as a 5-year geometric mean | Until numeric abundance<br>goals are met (Year 15) |
| Freshwater juvenile Survival (egg<br>to Chipps Island)               | ≥ 1.5%                                                                                                     | Assessed annually/Year 5, achieve the goal         |
| LSJR at Mossdale to Chipps Island<br>(Through-Delta) Survival (SJDS) | ≥ 20%                                                                                                      | Assessed annually/Year 5, achieve the goal         |
| Egg to tributary confluence with<br>LSJR                             | ≥ 10%                                                                                                      | Assessed annually/Year 5, achieve the goal         |

### **Productivity Goal**

#### Table 3.4. LSJR Fall-Run Chinook Salmon Juvenile Production Goals

|                                                | Goal            | Progress Assessment/                  |
|------------------------------------------------|-----------------|---------------------------------------|
| Productivity Metric                            | Per cohort year | · Attainment Target                   |
| Stanislaus River                               |                 |                                       |
| Confluence Juvenile Production                 | 2,700,000       | Assessed annually on an ongoing basis |
| Delta exit (Chipps Island) Juvenile Production | 400,000         | Assessed annually on an ongoing basis |
| Tuolumne River                                 |                 |                                       |
| Confluence Juvenile Production                 | 4,700,000       | Assessed annually on an ongoing basis |
| Delta exit (Chipps Island) Juvenile Production | 700,000         | Assessed annually on an ongoing basis |
| Merced River                                   |                 |                                       |
| Confluence Juvenile Production                 | 2,200,000       | Assessed annually on an ongoing basis |
| Delta exit (Chipps Island) Juvenile Production | 300,000         | Assessed annually on an ongoing basis |

### Diversity

- The variations in a population that help ensure its survival by contributing to its stability, resilience, and persistence
- More diverse populations are at less risk of extinction, for example from habitat and climate changes
- Initial biological goals include two types:
  - Genetic Diversity
  - Life History Diversity

### **Genetic Diversity Goal**

## Table 3.8. LSJR Fall-Run Chinook Salmon pHOS Genetic Diversity Goals for theLSJR Basin

|                          |                                       | Progress                      |
|--------------------------|---------------------------------------|-------------------------------|
|                          | Goal, measured as a 5-year running    | Assessment/Attainment         |
| Genetic Diversity Metric | average                               | Target                        |
|                          |                                       | Assessed annually/when the    |
| pHOS                     | Decreasing trend, as a 5-year running | genetic diversity goal is met |
| •                        | average                               |                               |
|                          |                                       | Assessed annually/Year 12     |
| pHOS                     | ≤ 15%                                 | after beginning of            |
| F                        |                                       | implementation                |
|                          |                                       | Assessed annually/Year 21     |
| pHOS                     | ≤ 10%                                 | after beginning of            |
| *                        |                                       | implementation                |

### Life-History Diversity Goal

#### Table 3.9. LSJR Fall-Run Chinook Salmon Juvenile Emigration Timing Goals

| Juvenile Size |                                                 |                                                |
|---------------|-------------------------------------------------|------------------------------------------------|
| Class*        | Positive Detection Each Week near               | Progress Assessment/                           |
| (Phenotype)   | Mouth of Each Tributary                         | Attainment Target                              |
| Fry           | Last week of January to second week of<br>April | Assessed annually/Year<br>10, achieve the goal |
| Parr          | First week of February to last week of<br>May   | Assessed annually/Year<br>10, achieve the goal |
| Smolt         | Third week of February – first week of<br>June  | Assessed annually/Year<br>10, achieve the goal |

\*Size classes are defined as fry < 55 millimeters (mm); parr 55 - 75 mm; smolt >75 mm

### Life-History Diversity Goal

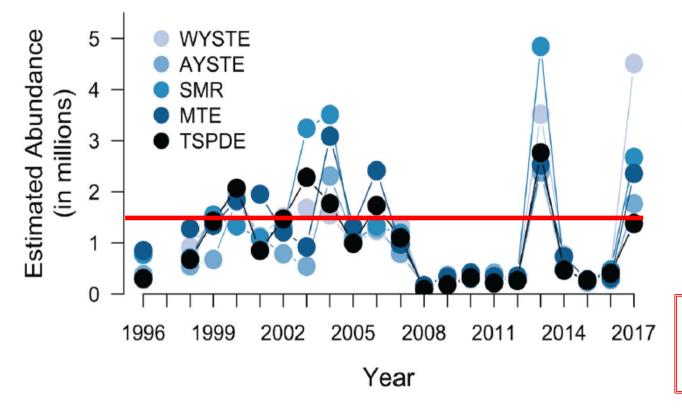
Table 3.10. LSJR Fall-Run Chinook Salmon Minimum Percentage for Different Size Classes\* at Migration Goals for different water-year types. These are measured as 3-year running averages at the mouth of each tributary.

|                          | Below Normal, Dry, and Critical Progress |                                             |
|--------------------------|------------------------------------------|---------------------------------------------|
| Wet and Above Normal WYs | WYs                                      | Assessment/Attainment Target                |
| Fry ≥ 20%                | Fry ≥ 20%                                | Assessed annually/Year 12, achieve the goal |
| Parr ≥ 20%               | Parr ≥ 30%                               | Assessed annually/Year 12, achieve the goal |
| Smolt ≥ 10%              | Smolt ≥ 20%                              | Assessed annually/Year 12, achieve the goal |

\* Size classes are defined as fry < 55 millimeters (mm); parr 55 - 75 mm; smolt >75 mm

### **Spatial Structure**

- Broad geographic distribution of populations or individuals in a population
- Reduces chance of catastrophic loss, facilitates recolonization, and buffers population from future environmental change
- Decreases extinction risk


The initial spatial structure biological goal in the LSJR is to achieve the abundance, productivity, and diversity goals on all three LSJR tributaries, the Stanislaus, Tuolumne, and Merced rivers

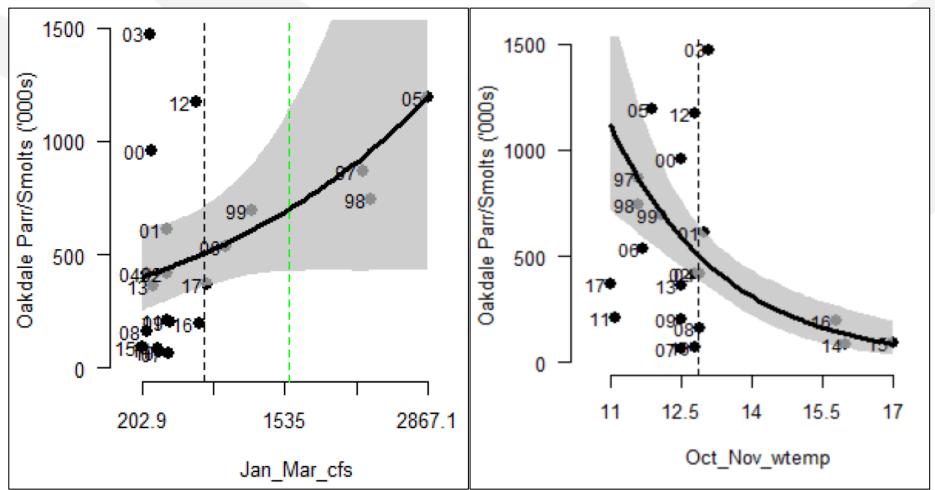
#### Initial STM Feedback

- Roles: Biological goals should not be limited in their roles and uses
- Abundance Goal: Objections to the use of escapement goals should reflect the attainment of the Plan's objective, e.g., ocean production or juvenile abundance
- Productivity Goal: The juvenile freshwater survival goal is too low and does not represent viability
- Abundance and Productivity Goals: Encouraged at the revised escapement goals, but both the escapement and juvenile production goals still lack considerations for density dependence, i.e., the Stanislaus River has a maximum carrying capacity below goals

### **Carrying Capacity**

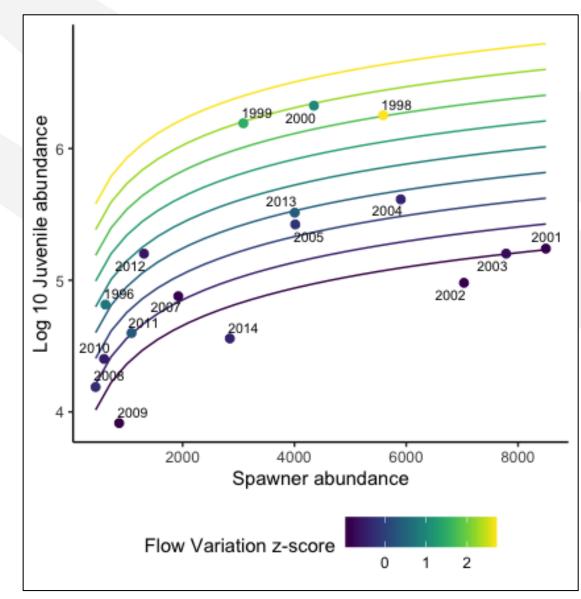
#### SAN FRANCISCO ESTUARY & WATERSHED SCIENCE




VOLUME 17, ISSUE 1, ARTICLE 4

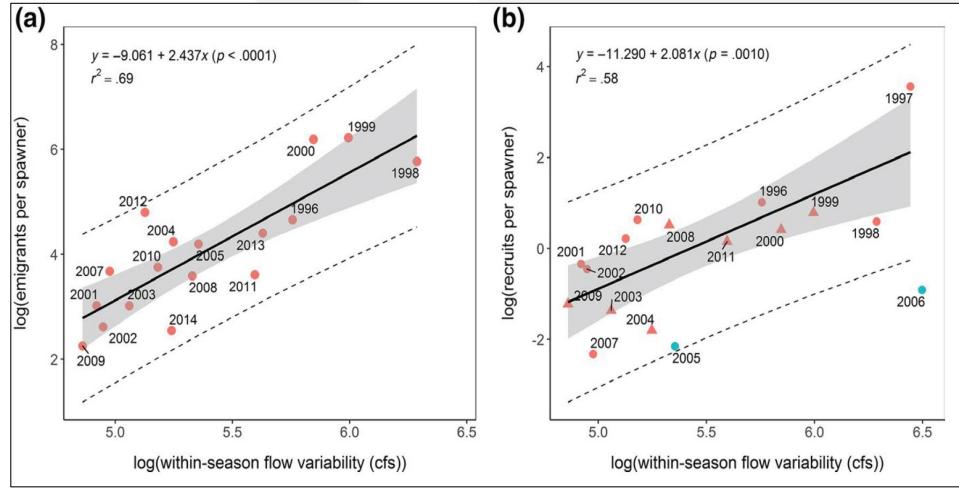
**Figure 4** Point estimates of annual juvenile salmon abundance at the Oakdale RST from 1996 to 2017. Colors represent the different estimation methods; within-year stratified trap efficiency (WYSTE), amongyear stratified trap efficiency (AYSTE), stratified mark-recapture (SMR), modeled trap efficiency (MTE), and the Bayesian tim++e-stratified Petersen diagonal recaptures experiments (TSPDE). Error bars are not shown, for ease of visualization, but are provided in Figure 3. Note that no trapping was performed in 1997.

More than 24% of years have greater than 1.5 million juvenile salmon migrating past the Oakdale rotary screw trap.


Pilger et al. 2019. Evaluation of Long-term Mark-Recapture Data for Estimating Abundance of Juvenile Fall-run Chinook Salmon on the Stanislaus River from 1996 to 2017. Redline added to figure at ~ 1.5 million.

Flow and Temperature Mediated Carrying Capacity




ISAP 2019

### Flow Mediated Carrying Capacity



**Biological Goals Report** 

### Flow Mediated Carrying Capacity



Sturrock et al. 2019

### Discussion

#### **Next Steps**

- Written comments on the 2<sup>nd</sup> Revised Draft Initial Biological Goals Report due May 12, 2023
- Release Draft Final Initial Biological Goals Report
- Board Meeting consideration of approval (anticipated in summer 2023)

## Closing