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Executive Summary 

The State Water Contractors and the San Luis & Delta-Mendota Water Authority (Public 
Water Agencies or PWAs) have conducted a technical assessment of the status and trends 
of eight fishes of concern in the Sacramento-San Joaquin Delta (Delta or estuary). In the 
ongoing workshops, the State Water Resources Control Board (State Water Board) has and 
will continue to receive information regarding the scientific and technical basis for 
potential changes to the 2006 Water Quality Control Plan for the Bay-Delta. This 
presentation has been prepared to help inform the second of those workshops on Bay-
Delta Fishery Resources. This document addresses fish species other than salmonids, which 
are described in a companion submission. 

These workshops provide an opportunity for the State Water Board to consider the wealth 
of scientific information that has been developed since it completed the review of the 2006 
Bay-Delta Plan and since it released the 2010 Flow Criteria Report. 

This submittal assesses the available scientific information on the multiple stressors 
affecting the Bay-Delta ecosystem and population-level effects on key fish species. An 
assessment of available scientific information reveals a high degree of uncertainty as to 
whether Delta through flows, particularly in the form of reservoir releases and export 
curtailments, affect the abundance of two key fish species, longfin smelt and delta smelt.  
Conversely, it is fairly well accepted that changes in food resources, in terms of quality and 
quantity, have likely impacted delta and longfin smelt abundances, and the best available 
information indicates that these changes have been caused by changes in nutrient loadings. 
Increasing water temperatures, changes in turbidity, and predation have also likely 
affected the abundance of the two smelt species. While these stressors are not controllable 
with reservoir releases or export curtailments, there are other actions that could be taken, 
including physical habitat restoration and pollution control. 

Longfin Smelt 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for longfin smelt include: 

 Their abundance index decline (based on the FMWT) is closely tied to food web 
changes. Invasion and establishment of the Amur River clam, Potamocorbula 
amurensis, and increases in the concentration of ammonium and changes in the 
ratios of key nutrients are the primary cause of detrimental changes to the food web 
in the upper estuary. 
 

 There are a number of factors besides the Amur River clam abundances and 
nutrients that have statistically significant relationships with longfin smelt 
abundance. They include winter-spring outflow, water clarity, and tributary flows. 
Water clarity and tributary flows, and other factors, correlate as well or better than 
winter-spring outflow. 
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 The longfin smelt’s full geographic range in the estuary should be considered. The 
Bay Study demonstrates that longfin smelt are found in significant numbers far 
downstream of the low-salinity zone in San Pablo, Central, and South bays in the 
winter and spring. The Fall Midwater Trawl does not sample longfin smelt’s full 
geographic range, although it does cover the region where most longfin smelt are 
found in the fall. Catch data from this survey do not well represent longfin smelt that 
are in deeper waters and the survey area is getting deeper. 
 

 While some longfin smelt are entrained and salvaged by water project operations, 
they are found infrequently and at very small percentages of the total population in 
the Delta in areas where the threat of entrainment may be high. 

Delta smelt 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for delta smelt include: 

 Four life cycle or multi-variable analyses of delta smelt abundance and potential 
stressors have recently been published (MacNally et al. 2010; Thomson et al. 2010; 
Maunder and Deriso 2011; Miller et al. 2012). These latter two studies show food 
resource availability to be a significant driver of delta smelt abundance. Thomson et 
al. (2010) found weak effects of water clarity and winter exports on delta smelt. 
MacNally et al. (2010) identified weak effects of predator abundance (largemouth 
bass) and stronger effects of warmer summer temperatures and duration of water 
temperatures suitable for spawning. Maunder and Deriso (2011) found that water 
temperature, prey density, and predators explained the recent decline in delta smelt 
abundance. And, Miller et al. (2012) found that prey density strongly predicted delta 
smelt abundance, while water temperature and predators were weakly associated 
with abundance.  None of these models indicate that X2 position in the fall months 
affects delta smelt abundance. 
 

 Delta smelt do not have a statistically significant relationship between species 
abundance and low salinity zone volume or winter-spring, summer, or fall outflow. 
 

 Feyrer et al. (2011) proposed a statistically significant relationship between species 
abundance and an index of habitat quality in the fall. Because the equation contains 
an induced correlation, the index of habitat quality cannot be relied upon as a 
predictor of abundance for delta smelt. Initial analyses suggest the relationship 
between abundance and the habitat index is not significant. Stated differently, 
because the index of habitat quality is also a measure of abundance, the relationship 
provides no support for the importance of the habitat quality index. Irrespective of 
whether the habitat index equation has a statistically significant relationship with 
abundance, the fall X2 conceptual model has several deficiencies: 
 

o Data analysis did not include Cache Slough abundance data; 
 



Bay-Delta Fisheries Resources: Pelagic Organisms 

 

September 14, 2012  Executive Summary  3 

 

o Studies ultimately focused on a single variable; 
 

o Four life cycle or multi-variable models independently reached the same 
conclusion: the position of X2 in the fall months has no statistically 
significant effect on species abundance; 
 

o Suisun Bay is not currently as productive as it once was; 
 

o It is unclear that delta smelt are distributed in relation to the low-salinity 
zone; 
 

o A complete analysis establishing that the position of X2 can serve as a 
surrogate for delta smelt habitat needs to be conducted; 
 

o Based on the high flows in 2011, the low Summer Townet Survey results for 
2012 would not have been predicted by the fall X2 conceptual model; 
 

o X2 position has not been trending upstream in the fall. 

Other Pelagic Organisms 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for other pelagic species include: 

 Green sturgeon: There is currently little or no scientific basis that any specific 
action, such as further modifications of water project operations, will produce 
negligible, limited, or substantial benefits. Due to a fundamental lack of information 
on the status of green sturgeon and the factors that limit its numbers, additional 
research is an essential prerequisite to the identification of additional actions. 

 
 Splittail: No flow-related actions are supported by the scientific literature. The 

literature supports actions intended to increase the availability of floodplain rearing 
and spawning habitat for splittail and other fishes, including physical modifications 
to the Fremont Weir and Yolo Bypass to manage the timing, frequency, and duration 
of inundation of the Yolo Bypass with gravity flow from the Sacrament River, and to 
improve upstream fish passage past barriers that include Fremont and Lisbon weirs. 
 

 Starry flounder: Based on the Bay Study Otter Trawl data from the past three 
decades, starry flounder is not experiencing a decline in abundance in the San 
Francisco estuary. There is no scientific justification for the SWRCB to take any 
further actions to maintain the abundance of the fish. 
 

 American shad: American shad is a bay fish that spawns upstream in larger rivers; it 
is not an estuarine fish. Its weak relationship with the location of X2 in the Delta is 
likely an artifact of physical circumstances that co-vary with inter-year variation in 
Delta through flows. Similar to Chinook salmon, the use of the Delta by American 
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shad is primarily a just-passing-through phenomenon on directional downstream 
migration to salt waters. The scientific literature does not support additional flow-
based action. 
 

 Northern anchovy:  The central stock of northern anchovy is not experiencing a 
decline. 
 

 Striped bass: In spite of the effects of density dependence during their young 
juvenile stage, sufficient numbers of age-0 fish appear to be recruiting into the adult 
population. Likewise, recreational catch, the California Department of Fish and 
Game’s (CDFG) designated beneficial use for striped bass, has not declined. 
 

 California bay shrimp: Based on the Bay Study Otter Trawl data, California bay 
shrimp is not experiencing a decline. There is no reason to believe that further 
actions are needed to maintain its abundance. 
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1.0 Longfin Smelt 
 

1.1 Introduction and Summary 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for longfin smelt include: 

 Their abundance index decline (based on the FMWT) is closely tied to food web 
changes. Invasion and establishment of the Amur River clam, increases in the 
concentration of ammonium, and changes in the ratios of key nutrients are the 
primary cause of detrimental changes to the food web in the upper estuary. 
 

 There are a number of factors besides the Amur River clam abundances and 
nutrients that have statistically significant relationships with longfin smelt 
abundance. They include winter-spring outflow, water clarity, and tributary flows. 
Water clarity and tributary flows, and other factors, correlate as well or better than 
winter-spring outflow. 
 

 The longfin smelt’s full geographic range in the estuary should be considered. The 
Bay Study demonstrates that longfin smelt are found in significant numbers far 
downstream of the low-salinity zone in San Pablo, Central, and South bays in the 
winter and spring. The Fall Midwater Trawl does not sample longfin smelt’s full 
geographic range, although it does cover the region where most longfin smelt are 
found in the fall. Catch data from this survey do not well represent longfin smelt that 
are in deeper waters and the survey area is getting deeper. 
 

 While some longfin smelt are entrained and salvaged by water project operations, 
they are found infrequently and at very small percentages of the total population in 
areas of the Delta where the threat of entrainment may be high. 
 

1.2 Life history 

The longfin smelt, Spirinchus thaleichthys, is a small (90–110 mm standard length at 
maturity) fish that usually has a 2-year life cycle (Moyle 2002). Historically, populations of 
longfin smelt in California have been present in the San Francisco estuary, Humboldt Bay, 
the Eel River estuary, and the Klamath River estuary (Moyle 2002). In the Bay-Delta, it is an 
anadromous species that spends its life in salt water except for spawning, when it seeks out 
lower salinity water. It is frequently referred to as a pelagic fish (that is, it lives in open 
waters), but it is encountered in shallow water circumstances and spawns along shorelines 
where fresher water meets the estuary (see, e.g., Sommer et al. 2007; Baxter et al. 2010). 
An examination of the available survey data suggests that a significant fraction of age-2 
longfin smelt reside near the bottom (Figure 1). Age-0 and age-1 longfin smelt are almost 
always found at greater densities deeper in the water-column (Rosenfield and Baxter 2007; 
Rosenfield 2010). 
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According to some monitoring surveys, the longfin smelt is among the native species in the 
San Francisco estuary that have declined dramatically over the past decade and a half (see, 
e.g., Baxter 1999; Moyle 2002), with a recent rapid collapse coincident with the POD 
(Baxter et al. 2010). Despite this decline, they have been, and may continue to be, among 

the most abundant resident 
pelagic or demersal fish 
species in the estuary (Dege 
and Brown 2004; Sommer 
et al. 2007). 

As adults mature and 
prepare to spawn, most 
often from December 
through February, they 
make generally short-
distance, brief spawning 
runs into fresher water 
where spawning takes place 
over a sand substrate 
(Baxter et al. 2009). Hobbs 
et al. (2010) examined 
otoliths and isotopic 
signatures and determined 
that the salinity preference 
of larval longfin smelt is 
broad (from 0-15 ppt), with 
frequent occurrence in 
fresher water salinities (~1-
3 ppt) and in brackish 
waters (>5 ppt). Baxter et al. 
(2010) reports that 
“nursery habitats” cover a 
wide salinity range from 0.1-
18 ppt. 

Moyle (2002) reported that 
spawning by longfin smelt in 

the Delta occurs below Medford Island in the San Joaquin River and below Rio Vista on the 
Sacramento River. The western extent of spawning habitat in the Delta was previously 
thought to be in upper Suisun Bay around Pittsburg and in Montezuma Slough in Suisun 
Marsh (Moyle 2002); however, the 20-mm Survey has found large numbers of larval 
longfin smelt in the Napa River. The conclusions of Moyle (2002) are contradicted by more 
recent published material. As presented by Leidy (2007) and Rosenfield (2010), other 
watercourses tributary to San Pablo Bay (e.g., the Petaluma River and Sonoma Creek) and 
South Bay (e.g., Coyote Creek) may also provide spawning habitat (there are currently no 
regular fish monitoring programs on those tributary streams), suggesting they are not 
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Figure 1. Bay Study Otter Trawl (boxes) and Midwater Trawl (circles) 
catch per unit effort. Age-0 and age-1 fish catch is greater in the Otter 
Trawl, which samples near the bottom, than the Midwater Trawl, 
indicating that many fish are more demersal than pelagic. Age-2 fish are 
more pelagic. Otter Trawl CPUE converted to the same units as the 
Midwater Trawl. Data from the California Department of Fish and Game’s 
Bay Study. 
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exclusively dependent on the Suisun Bay region or the low-salinity zone for rearing. The 
upper end of the spawning habitat in the Delta is in the region of the confluence of the 
Sacramento and San Joaquin rivers, although the 20-mm Survey records small numbers of 
longfin smelt as far upstream on the Sacramento River as the Cache Slough region and east 
into the central estuary; however, these represent a very small percentage of their 
distribution (e.g., Baxter et al. 2009 characterizes upstream spawning as sporadic and 
rare). Larvae are found in salinities up to 15 ppt (Hobbs et al. 2010) and juveniles inhabit 
most of the estuary seaward of about 2 psu (Kimmerer 2002). 

1.3 Abundance and Distribution of Longfin Smelt 

Rosenfield and Baxter (2007) and Baxter et al. (2009) document that the range of longfin 
smelt extends into San Francisco Bay. The available data show the primary geographic 
range of the San Francisco estuary population of longfin smelt extends from the lower 
Sacramento River confluence downstream through Suisun, San Pablo, and Central bays, and 
even in South Bay and the near-ocean. Small fractions of the population can be found as far 
upstream as the American River, the lower San Joaquin River, and various other interior 
portions of the Delta, Suisun Marsh, and Cache Slough (Figure 2). In every life stage and in 
every year, most of the population(s) is located in north San Francisco, San Pablo, and 
Suisun bays. Suisun and San Pablo bays show consistently more frequent longfin smelt 
occurrences compared with other regions, suggesting those waters serve as potential 
nursery areas (Figure 3A, 3B, 3C). In contrast, the Delta surveys have shown irregular and 
small occurrences, suggesting habitats upstream of Suisun Bay may be of lesser quality, or 
are only utilized under certain circumstances.  

The data reflected in Figures 2, 3A, 3B, and 3C suggest that longfin smelt are not tightly 
associated with a particular salinity or the estuary’s low-salinity zone,  which is consistent 
with Kimmerer (2004) and Baxter et al. (2010). 

Baxter et al. (2010) reported on a general shift in where longfin smelt are captured in the 
water column. The ratio of catch in the water column to catch at the bottom declined 
sharply during the POD years and has remained low, suggesting a shift in habitat use 
toward the bottom. Through the entire period of record, summer-fall longfin smelt (mostly 
age-0) catches in the Bay Study Midwater Trawl generally exceeded those in the Otter 
Trawl in Suisun Bay and the west Delta, whereas from San Pablo Bay downstream the 
reverse was true. During the POD years, coincident with the sharp drop in the Bay Study 
Midwater to Otter Trawl catch ratio, relative Otter Trawl catches by embayment shifted 
downstream and the greatest proportion occurred in Central Bay. Thus, both historical and 
recent downstream shifts in habitat use seem to have occurred, in addition to the recent 
shift toward the bottom indicated by the Bay Study Midwater:Otter Trawl ratio decline. 
These shifts downstream and toward the bottom further suggest that the pelagic feeding 
environment of the upper estuary has declined and that the longfin smelt response 
occurred in stages. Also, such shifts undoubtedly affected longfin smelt abundance as 
indexed by midwater trawls (FMWT and Bay Study Midwater Trawl) and contributed in 
part to the declines observed in their respective abundance indices. All of this suggests that 
there is some uncertainty in the results of the trawl data.
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Figure 2. Extent of Interagency Ecological Program monitoring stations. The Fall Midwater Trawl does not extend into 
Central and South Bays while the Bay Study trawls do. The Bay Study trawls demonstrate that longfin smelt’s known 
range in the estuary extends into these bays. From Gray et al. (in prep). 
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Schoellhamer (2011) notes that the estuary overall is in an erosion state, with its main 
channels deepening. Such changes in the Delta’s bathymetry could further affect the 
monitoring catch of longfin smelt. The midwater trawls (Bay Study and FMWT) sample to a 
depth of 10-12 m because of gear limitations. Many of the estuary’s main channels now 
exceed this depth (see Bay Study and FMWT data at http://www.dfg.ca.gov/delta/). 
Approximately one-third of the Bay Study stations now exceed 12 m in depth. Thus, at 
many stations the midwater trawls are no longer sampling the deepest stratum of the 
water, even as longfin smelt catch has been shifting towards the bottom. 

1.4 Environmental Factors Affecting Longfin Smelt 

1.4.1 Food Resources 

Food resources utilized by fishes of concern have declined in the low-salinity zone and 
upstream on the Sacramento River (Jassby et al. 2002; Kimmerer 2004). Nixon (1988) 
reports a strong relationship between production at the base of the food web (primary 
production) and production of fish (fishery yield), providing an explanation for the low 
fishery production in the Bay-Delta estuary. USFWS (2012) links changes in primary 
production caused in part by the invasion and establishment of the Amur River clam to 
longfin smelt population dynamics. Glibert et al. (2011) links changes in primary 
production to unbalanced nutrient ratios, a change that likely created conditions 
supportive of the Amur River clam’s invasion. While other factors may also be at work, the 

Figure 3A. Spring distribution of longfin smelt in the Bay-Delta system based on catch per unit effort. (A) Age-0 fish. 
Note, the dark shaded circles represent 90% of the effort adjusted catch (major catch) and the light circles indicates the 
<9% effort adjusted catch (minor catch). Longfin smelt are found far below the low-salinity zone, especially in San Pablo 
Bay. From Gray et al. (in prep). 

B 

A 
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hypothesis that changes in primary production are a strong driver of longfin smelt declines 
is plausible. 

Juvenile longfin smelt feed primarily on calanoid copepods, especially Eurytemora affinis, 
whereas older juveniles and adults feed principally on opossum shrimpand Acanthomysis 
spp. shrimp, when available (Hobbs et al. 2006; Slater 2008; Rosenfield 2010). E. affinis is 
important to age-0 longfin smelt in the spring. In summer and early fall, larger longfin 
smelt switch to N. mercedis (Slater 2008). In later fall, amphipods become regionally more 
important.  Opossum shrimp has declined substantially in the estuary since the early 1970s   
(Orsi and Mecum 1996); when opossum shrimp are less abundant, adult longfin smelt 
return to feeding primarily on copepods and amphipods (Feyrer et al. 2003; Hobbs et al. 
2006; USFWS 2012). It is widely accepted that food resources preferred by native fishes 
have suffered a major decline in the Delta (Kimmerer 2002; Moyle 2002; Rosenfield and 
Baxter 2007), being replaced by smaller, less nutritious taxa (Lehman 2000; Lehman et al. 
2005; Lehman et al. 2010; Jassby et al. 2002; Sommer et al. 2007; Glibert et al. 2011; 
Winder and Jassby 2010). 

Invasion of the estuary by the Amur River clam, P. amurensis, led to a sharp decline in the 
abundance of E. affinis, N. mercedis, and other mysids in the Suisun Bay region (Orsi and 

Figure 3B. Spring distribution of age-1 longfin smelt in the Bay-Delta system based on catch per unit effort. Note: the 
dark shaded circles represent 90% of the effort adjusted catch (major catch) and the light circles indicates the <9% 
effort adjusted catch (minor catch). Age-1 longfin smelt are found throughout San Francisco Bay and west of the low-
salinity zone. From Gray et al. (in prep). 
 

B 
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Mecum 1996). After examining a number of potential causes of the opossum shrimp 
decline, Orsi and  Mecum concluded that food limitation caused by grazing of the Amur 
River clam is the most probable cause. A factor leading to their conclusion is that, after 
1984, the percent of large mysids (>11 mm) declined and was very low from 1988 to 1993. 
Orsi and Mecum concluded that so long as P. amurensis remains abundant in Suisun Bay, 
the abundance of N. mercedis is likely to also remain low. Additionally, the introduction and 
population increase of two Asian mysids in 1992 may compete with N. mercedis for 
resources (Orsi and Mecum 1996). According to Glibert et al. (2011), changes in nutrient 
forms and ratios may have played a role in the successful invasion by and establishment of 
the Amur River clam.  

In addition to the food limiting effects of the Amur River clam, E. affinis and the opossum 
shrimp also suffered further declines because of unbalanced nutrient ratios that favor 
smaller, less nutritious taxa (Lehman 2000; Lehman et al. 2005; Lehman et al. 2010; Jassby 
et al. 2002; Sommer et al. 2007; Winder and Jassby 2010; Glibert et al. 2011; Glibert 2012). 

Figure 3C. Spring distribution of age-2 longfin smelt in the Bay-Delta system based on catch per unit effort. Note: the 
dark shaded circles represent 90% of the effort adjusted catch (major catch) and the light circles indicates the <9% 
effort adjusted catch (minor catch). Adult longfin smelt are found throughout the estuary. From Gray et al. (in prep). 
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 A manifestation of the imbalance in the nitrogen:phosphorus ratio may have created 
conditions favorable for invasion by the Amur River clam (Glibert et al. 2011). A detailed 
discussion of the current condition of the estuary’s food web is found in the PWA’s 
submittal, Ecosystem Changes to the Bay-Delta Estuary: A Technical Assessment of Available 
Scientific Information, dated 16 August 2012. 

A potential response by fishes to reduced food supplies in a region is to move to more 
favorable areas without such limitations, if possible. A change in distribution from areas of 
low food availability to more productive areas may have occurred, as Baxter et al. (2010) 
notes that shifts in distribution away from habitats sampled by the Fall Midwater Trawl 
may explain some of the decline in longfin smelt in the FMWT abundance index, just as it 
has for striped bass (Sommer et al. 2011) and northern anchovy (Kimmerer 2006). 

Reduced abundance is not observed in the Bay Study Otter Trawl (Baxter et al. 2010), 
which samples down through San Pablo, Central, and South bays (see Figure 1); these 
regions have not experienced as severe a drop in chlorophyll-a as seen in Suisun Bay and 
the Delta (Kimmerer 2004). 

1.4.2 Entrainment 

Grimaldo et al. (2009) stated: “There is considerable concern about the number of fish 
entrained at the export facilities. Unlike the X2-fish relationships, there is no direct evidence 
that entrainment affects population-level responses of fish.” Likewise, Baxter et al. (2010) 
acknowledged that the effects of entrainment on the longfin smelt population was 
unknown. Except for 2002, when an unusual number of longfin smelt were salvaged, 
entrainment by the water projects has been very low. USFWS (2012) reported the total 
number of spawning age longfin smelt salvaged at both pumps between 1993 and 2007 
was 1,133 (an average of 87 fish per year). Baxter et al. 2009 characterizes upstream 
spawning, which may increase the likelihood that larval longfin smelt could be entrained, 
as sporadic and rare. 

Rosenfield (2010) hypothesized that the water projects may entrain significant numbers of 
larval longfin smelt in low outflow years and immediately after the spawning period.1 Using 
particle tracking models and distributional assumptions, Baxter et al. (2009) estimated that 
larval entrainment at the water projects might be 2-10% of the total larval population. 
Table 2 of Baxter et al. (2009) indicates that entrainment of larval longfin smelt can reach 
the tens of thousands, and may have reached over a million fish in 2002; however, Table 2 
of Baxter et al. (2009) is based at least partially on prescreen losses of juvenile Chinook 
salmon, delta smelt, striped bass, and steelhead trout (see Baxter et al. 2009, Appendix B). 
As these species have not been verified as appropriate surrogates for juvenile or adult 
longfin smelt for the purpose of estimating entrainment, Baxter et al.’s (2009) estimates 
are uncertain. And, based on the 20-mm Survey, which does not survey the entire range of 
longfin smelt, only small numbers of larval-juvenile longfin smelt are found in the sub-
region of the Delta in which the pumps are located, indicating that entrainment of larvae is 

                                                        
1  Fish less than 20-mm are not efficiently captured by the salvage facilities and are not counted in 
salvage surveys. 
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expected to be low. As previously mentioned and as demonstrated by Figures 3A-3C, in 
every life stage and in every year the bulk of the longfin smelt population is located in 
Central, San Pablo and Suisun bays (Figure 4). 

 

 
Baxter et al. (2009) also used particle tracking model runs to estimate the potential for 
entrainment of larval longfin smelt. Seven particle injection points were chosen, most of 
which were in the interior Delta and up to the Cache Slough region, areas which are outside 
the typical distribution of longfin smelt. Each of the insertion points introduced 5,000 
particles, even though Baxter et al. (2009) characterizes upstream spawning as sporadic 
and rare. This casts further uncertainty on Baxter et al.’s (2009) conclusions on longfin 
smelt entrainment. 

The importance of entrainment by the CVP and SWP pumping plants us further questioned 
by the data which show  that far more longfin smelt are caught as bycatch – a form of 
entrainment – in small bay shrimp trawl fishery and bait fishing (anchovies and sardines) 
operations in South San Francisco Bay, San Pablo Bay, and Carquinez Strait (CDFG 2009). 
The California Department of Fish and Game estimated the total longfin smelt bycatch from 
shrimping in 1989 and 1990 at 15,539 fish, and in 2004 at 18,815-30,574 fish. Even though 
the bay shrimp trawl industry has declined since 2004, it continues to entrain longfin smelt 
at levels greater than those attributed to the water projects (USFWS (2012). 

1.5 Reasons for Caution Regarding Flow Relationships 

Numerous sources have described the positive correlation between winter-spring estuary 
outflow and longfin smelt abundance (see, e.g., Stevens and Miller 1983; Jassby et al. 1995; 
Kimmerer 2002, 2004; Kimmerer et al. 2009). However, the biological mechanism(s) of the 
spring X2:longfin smelt abundance relationship remains unknown (Kimmerer et al. 2009; 
Baxter et al. 2010), even though considerable research efforts have been undertaken since 
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Figure 4. Percent frequency of detection of age-0 longfin smelt by region. “X” indicates no sampling and “0” indicates 
sampling but no longfin smelt observed. Data were from BMWT = Bay Study Midwater Trawl; BOT = Bay Study 
Otter Trawl; Kodiak = Spring Kodiak Trawl. 
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1995 to better understand the causal mechanisms underlying the relationship (see, e.g., 
Sommer et al. 2007; MacNally et al. 2010; Rosenfield 2010; Thomson et al. 2010). Without 
an understanding of the causal mechanisms, significant uncertainty exists with any 
management action that is based on outflow:abundance relationships. 

The Jassby et al. (1995) study, which was the basis for the X2 standard adopted by the 
SWRCB in D-1641, cautioned: “What are the causal mechanisms underlying these 
[salinity:organism] relationships? A variety of potential mechanisms deserves detailed 
consideration that is beyond the scope of this study…” and “In certain cases, variables 
correlated with X, or net Delta outflow are thought to be important causal factors. These 
correlations may not persist into the future if the estuary is managed in a different fashion, 
and the utility of X, as a predictor may no longer hold.” Kimmerer (2002), which reevaluated 
the Jassby et al. (1995) X2:organism relationships and attempted to identify mechanisms of 
effect, acknowledged: “The current state of knowledge about flow effects does not provide 
adequate support to decision making. The salinity standard is a crude tool that could possibly 
be made more effective. Major changes in configuration of the Delta or regional climate could 
result in unanticipated changes in flow response of the estuarine ecosystem. Reductions in 
export flow are inadequately supported by evidence, evidence, and there is little 
understanding of population-level effects of entrainment in export pumping facilities. The 
effectiveness of export reductions using environmental water has not been put in a 
population-level context or compared with alternative actions in the watersheds. All of these 
problems are shortfalls of knowledge that can be addressed through a program of research 
coupled with experimental manipulation of some aspects of freshwater flow.” Kimmerer et al. 
(2009), which again examined X2:habitat relationships for several estuarine organisms, 
concluded that longfin smelt are not among the fish species whose habitat area were 
shown to benefit from increased seasonal flows through the Delta. 

Not only does the scientific literature question the reliance on flow:abundance 
relationships, but consideration of the relationship of other factors and abundance raises 
additional uncertainty. While longfin smelt abundance based on the FMWT is correlated 
with winter-spring X2, it is also strongly and directly correlated with ammonium (Glibert 
2010; Glibert et al. 2011), nutrients (Glibert et al. 2011), food resources (especially mysid 
shrimp; Chigbu et al. 1998), Secchi depth, and winter-spring Napa River flows. (See Figure 
5.) Importantly, at least some of these other relationships have direct causal mechanisms.  
That is, the scientific literature explains the direct impacts of food resources (caused by 
ammonium and nutrients) and/or the effect of nutrient ratios on primary productivity and 
speciation. 

Another area of uncertainty regarding the statistical relationship between outflow and 
abundance is due to the specific survey data used. Jassby et al. (1995) examined the 
relationship between the location of the X2 isohaline in the winter:spring and the 
abundance of longfin smelt based on the Fall Midwater Trawl. As previously discussed, the 
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Fall Midwater Trawl misses much of the range of longfin smelt (see Figure 2, Figures 3A-
3C). 

Another area of caution relates to differences in efficiencies between the fish monitoring 
surveys. The Fall Midwater Trawl is conducted from September-December using a large net 
towed mid-channel and obliquely from the bottom to the surface. It primarily samples age-
0 longfin smelt. Gear limitations prevent the nets from sampling deeper than 
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Figure 5. Relationships between various factors and longfin smelt FMWT Index. (A) Mysid CPUE (#/m3); 
(B) X2 (km); (C) DIN:TP (wt:wt); (D) 𝑁𝐻4

+ (mg L-1); (E) Secchi Depth (cm); (F) Average Napa River flows 
Jan-Mar (cfs). Except for X2, all values are log values. Black boxes 1975-1988; red boxes 1988-2011 
except for (C), (D) and (E) which are 1988-2010. Black lines 1975-2011 except for (C), (D) and (E) which 
are 1988-2010; red lines 1988-2011 except for (C), (D) and (E) which are 1988-2010. Bold R2 values are 
significant at p≤0.05. 



Bay-Delta Fisheries Resources: Pelagic Organisms 

 

16  Longfin Smelt (Spirinchus thaleichthys)  September 14, 2012 

 

approximately 10-12 m; many monitoring stations now exceed 10-12 m in depth. The Bay 
Study Otter Trawl is conducted throughout the year using a net designed to travel along the 
channel bottom picking up demersal organisms (although there may be some residual 
sampling of other water depths as the net is lowered and raised to the surface) (see state 
Department of Fish and Game’s website for a description of trawl gear). The Bay Study 
Otter Trawl and its related Midwater Trawl samples the area covered by the FMWT and 
also downstream (see Figure 2). The Bay Study is the only one that covers the Central and 
South Bays, the downstream range of longfin smelt in the estuary. 

The differences in the fish monitoring surveys can be illustrated by examining the post-
1987 period (Figure 6). Much of the longfin smelt population decline appears to have 
occurred shortly after 1987 (see, e.g., Jassby et al. 1995; Kimmerer et al. 2009), with only 
moderate declines since then. The Bay Study Midwater Trawl and FMWT indicate a 
continued but slower rate of decline since approximately 2000, while the Bay Study Otter 
Trawl indicates a level or slightly rising trend. In addition, it appears that as Secchi depth 
decreases (turbidity increases) the Otter Trawl catch increases and the Fall Midwater 
Trawl decreases. The fact that the Bay Study Midwater Trawl, FMWT, and Otter Trawl 
present a different picture of historical trends indicates there is still uncertainty regarding 
longfin smelt’s true population status. And, the average depth of the estuary’s bays has 
been increasing over time (Jaffe et al. 1998; Cappiella et al. 1999). The estuary is in an 
erosion stage, resulting in deepening channels (Schoellhamer 2011). In addition, the 
efficiency of the midwater trawls may have decreased over time as the channels have 
eroded. 
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2.0 Delta Smelt 

2.1 Introduction and Summary 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for delta smelt include: 

 Four life cycle or multi-variable analyses of delta smelt abundance and potential 
stressors have recently been published (MacNally et al. 2010; Thomson et al. 2010; 
Maunder and Deriso 2011; Miller et al. 2012). These latter two studies show food 
resource availability to be a significant driver of delta smelt abundance. Thomson et 
al. (2010) found weak effects of water clarity and winter exports on delta smelt. 
MacNally et al. (2010) identified weak effects of predator abundance (largemouth 
bass) and stronger effects of warmer summer temperatures and duration of water 
temperatures suitable for spawning. Maunder and Deriso (2011) found that water 
temperature, prey density, and predators explained the recent decline in delta smelt 
abundance. And, Miller et al. (2012) found that prey density strongly predicted delta 
smelt abundance, while water temperature and predators were weakly associated 
with abundance.  None of these models indicate that X2 position in the fall months 
affects delta smelt abundance. 
 

 Delta smelt do not have a statistically significant relationship between species 
abundance and low-salinity zone volume, winter-spring, summer, or fall outflow. 
 

 Feyrer et al. (2011) proposed a statistically significant relationship between species 
abundance and an index of habitat quality in the fall. Because the equation contains 
an induced correlation, the index of habitat quality cannot be relied upon as a 
predictor of delta smelt abundance. Initial analyses suggest the relationship 
between abundance and the habitat index is not significant. Stated differently, 
because the index of habitat quality is also a measure of abundance, the relationship 
provides no support for the importance of the habitat quality index. Irrespective of 
whether the habitat index equation has a statistically significant relationship with 
abundance, the fall X2 conceptual model has several deficiencies: 
 

o Data analysis did not include Cache Slough abundance data; 
 

o Studies ultimately focused on a single variable; 
 

o Four life cycle or multi-variable models independently reached the same 
conclusion: the position of X2 in the fall months has no statistically 
significant effect on species abundance; 
 

o Suisun Bay is not currently as productive as it once was; 
 

o It is unclear that delta smelt are distributed in relation to the low-salinity 
zone; 
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o A complete analysis establishing that the position of X2 can serve as a 

surrogate for delta smelt habitat needs to be conducted; 
 

o Based on the high flows in 2011, the low Summer Townet Survey results for 
2012 would not have been predicted by the fall X2 conceptual model; 
 

o X2 position has not been trending upstream in the fall. 
 

2.2 Delta Smelt Biology 

The delta smelt, Hypomesus transpacificus, is a small, almost transparent, euryhaline fish 
species with a mostly annual life cycle. Most adults die following spawning in the spring, 
but a few survive a second year (Moyle et al. 1992; Bennett 2005). Young delta smelt 
emerge in the late winter or early spring, grow rapidly during summer, and reach 
adulthood in the fall months (Moyle 2002). 

Water temperatures over about 25°C are lethal and can constrain delta smelt habitat, 
especially during summer and early fall (Swanson et al. 2000). The fish has been found as 
far west as San Pablo Bay and as far upstream on the Sacramento River as the confluence 
between the Sacramento and Feather rivers (Merz et al. 2011). In most years, the bulk of 
the population is distributed from Grizzly Bay to the Cache Slough region (Merz et al. 
2011). In recent years, monitoring catch in the Cache Slough region, including the 
Sacramento Deep Water Ship Channel, has demonstrated that this region is vitally 
important to the population. 

2.3 Delta Smelt Habitat 

Habitat for a species is generally defined as a geographic area that supports the physical 
(abiotic) and biological (biotic) resources upon which a species depends. For analytical 
purposes and for assessing effects, this approach has not been used by the fishery agencies; 
rather, the location of X2, or the volume of water in the low-salinity zone, has been used to 
measure habitat changes. Therefore, instead of considering the full range of habitat 
features that delta smelt utilize, the fishery agencies have generally only looked at one –  X2 
position. If a habitat surrogate such as X2 position is to be used, there needs to be an 
accompanying analysis explaining why that single factor accurately predicts changes in the 
array of habitat features that define species habitat. 

Part of the difficulty in defining habitat for delta smelt is that there is limited research on 
the habitats that delta smelt prefer, as well as a comprehensive understanding of why smelt 
are distributed as they are, with a large segment of the population occurring in 
comparatively fresh water year round. There is also much that still needs to be learned 
about how delta smelt use their environment at various life stages (e.g., whether delta 
smelt migrate, their mobility at various life stages, habitat preferences, etc.).  

There are a variety of researchers investigating the habitat needs and preferences of delta 
smelt.  This research includes work by Hamilton and Murphy. Their work may provide an 
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operational description of habitat. The Hamilton and Murphy habitat affinity analysis 
covers multiple life stages of the delta smelt drawn from time-series data from four trawl 
surveys, and data on environmental attributes taken from throughout the distribution of 
the fish. Ranges of conditions acceptable to delta smelt for each of seven environmental 
attributes were identified. Low turbidity and high water temperatures render a large 
portion of the estuary seasonally unacceptable to delta smelt. Within areas that experience 
largely acceptable water quality conditions, patterns of delta smelt occurrences indicate 
that habitat occurs where deep channels adjoin shallow-water circumstances and extensive 
patches of emergent vegetation. Habitat suitability indices show that favored 
environmental circumstances vary with life stages, and delta smelt move as they mature to 
access suitable areas with environmental attributes in acceptable ranges. Areas that exhibit 
highest geometrically weighted average HSI values for environmental attributes are 
displayed on maps, and can be viewed as representing potential priority target areas for 
habitat restoration efforts. 

Hamilton and Murphy (in prep) describe habitat for delta smelt as: 

“…areas in the northern and central estuary that are characterized by complex 
bathymetry, with deep channels close to shallows and shorelines, with little 
submerged vegetation, but immediately bounded by extensive tidal or freshwater 
marshlands. Such situations appear to contribute to local production of diatom-rich 
phytoplankton communities that support calanoid copepods, in particular 
Eurytemora and Pseudodioptomus, and some cyclopoid zooplankton, which are 
frequent in the diets of delta smelt. The fish demonstrates affinities for waters that 
experience salinity in the range of 200-8000 EC, a water transparency (Secchi 
depth) less than 50 cm, and temperatures below 22 degrees Celsius, with preferred 
conditions varying somewhat with life stage. Before spawning, delta smelt initiate a 
diffuse landward dispersal to fresher-water circumstances, and while little is known 
about the microhabitat conditions required for successful spawning, preferred 
substrates may include clean cobble or sandy surfaces to which eggs are adhered. 
Delta smelt frequently are found in open water situations, but less so during 
spawning. Where pre-spawning delta smelt must disperse greater distances to 
spawning areas, intervening areas of the estuary, including some areas with 
conditions less suitable for delta smelt, are included as habitat.”  

Sommer and Mejia (in review) largely corroborates the habitat preference findings of 
Hamilton and Murphy (in prep), although Sommer and Mejia did not perform affinity or 
similar habitat preference analyses. 

While not the definitive work, Hamilton and Murphy (in prep) does provide an initial 
framework for further study regarding delta smelt habitat preferences. Future habitat 
restoration projects should consider the design elements proposed by Hamilton and 
Murphy, thereby testing their habitat models as part of a practical experiment that will 
assist in defining delta smelt habitat. 
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2.4 Environmental Factors Affecting Delta Smelt 

There are four delta smelt life cycle analyses that have been published, each evaluating the 
available data with the intention of learning more about the environmental stressors 
driving delta smelt abundance. Each model was created independently of the others and as 
a result the approaches and data sets used in each analysis differ. The results of these 
analyses provide insight into the drivers of delta smelt abundance, particularly where there 
is substantial agreement between the models. The models generally agree that food 
resources are important, as well as temperature and predation. Fall X2 position was not 
identified as a driver of abundance. 

2.4.1 Nutrients 

Recent analyses have demonstrated inhibitory effects of ammonium on the nitrogen uptake 
and productivity of phytoplankton (Wilkerson et al. 2006; Dugdale et al. 2007; Brooks et al. 
2012; Parker et al. 2012a, 2012b) and the effects of an altered N:P ratio on community 
structure (Glibert 2010; Glibert et al. 2011; Glibert 2012). Both of these effects occur in the 
Delta, particularly in Suisun Bay, where previously large springtime blooms of 
phytoplankton occurred but which are currently rare. Evidence that the Delta suffers from 
the long-term consequences of changes in nutrient forms and ratios is found in the decline 
of diatoms and dominance of flagellates and cyanobacteria (Brown 2009; Glibert et al. 
2011). Major changes in the estuary’s food web have lowered its carrying capacity for 
higher trophic levels (Kimmerer et al. 2000). Changes in nutrient forms and ratios offer a 
plausible biological mechanism for trophic changes (Glibert 2010; Glibert et al. 2011). 
Evidence of glycogen depletion demonstrates that delta smelt in at least some regions of 
the estuary are food limited (Bennett 2005; Bennett et al. 2008). A decline in average 
length at age is further evidence for food shortages (Sweetnam 1999; Bennett 2005). 
Glibert et al. (2011) found a relationship between phosphorus and length at age, suggesting 
a stoichiometric explanation. (See expanded discussion of nutrients in PWA submittal for 
ecosystem change and low salinity zone workshop and presentation by Dr. Patricia 
Glibert.) 

2.4.2 Declines in Primary Productivity 

Significant changes to the estuary’s food web have occurred, particularly when the Amur 
River clam became abundant after 1987 (Carlton et al. 1990; Alpine and Cloern 1992; 
Kimmerer et al. 1994; Feyrer et al. 2003; Kimmerer 2006; Feyrer et al. 2007; Greene et al 
2011). Kimmerer et al. (1994) reported a 69 percent drop in chlorophyll concentration 
after the Amur River clam became abundant. Because it consumes diatoms and copepod 
nauplii, P. amurensis has played a role in the restructuring of the plankton community in 
the estuary (Carlton et al. 1990; Kimmerer et al. 1994). Greene et al. (2011) found that P. 
amurensis also feeds heavily on microzooplankton (e.g., ciliates), which are a food resource 
for macrozooplankton (e.g., copepods). As a result, the Amur River clam may disrupt the 
link between these trophic levels (Greene et al. 2011). 

The Amur River clam has a wide tolerance for salinity, being found in the full range of bay 
salinities (<1 to 33‰) (Carlton et al. 1990). The euryhaline Asiatic bivalve Corbicula 
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fluminea invaded the estuary in the 1940s. On average, it has been more abundant in the 
central Delta and Suisun Bay regions after wet years, while the Amur River clam has been 
more abundant, mostly in the Suisun Bay region, in dry years (Peterson and Vayssières 
2010). This fact has significant implications to species recovery, since it is likely that 
changes in salinity simply shifts the dominant benthic bivalve community from one species 
to another (Peterson and Vayssières 2010). 

A second driver of change to the estuary’s food web came into play when increasing 
anthropogenic discharges of nitrogen were coupled with reductions in phosphorus loading 
in the estuary (Van Nieuwenhuyse 2007; Glibert et al. 2011). Changes in nutrient forms and 
ratios caused stoichiometric changes in lower trophic levels, away from a diatom-based 
food web and toward a less efficient bacterial food web (Glibert 2010; Glibert et al. 2011). 
According to Glibert (2010), the decline in diatoms, which began in 1982, is highly 
correlated with the increase in ammonium loading. (Delta smelt abundances experienced a 
step change in 1981-1982 (Kimmerer et al. 2009)). Diatoms prefer – and, under some 
conditions, physiologically require – nitrate over ammonium, unlike many other algae 
which preferentially use ammonium over other nitrogen forms. As nitrate became less 
available relative to ammonium in Suisun Bay, a competitive advantage shifted to 
phytoplankton taxa that can more efficiently use reduced forms of nitrogen. Among the 
phytoplankton groups that replaced diatoms in the estuary, cyanobacteria and many 
flagellates show a preference for chemically reduced forms of nitrogen (Berg et al. 2001; 
Glibert et al. 2004, 2006; Brown 2009). 

Today, the Suisun Bay region is dominated by cyanobacteria and flagellates (Brown 2009).  
Observed changes in zooplankton composition are consistent with ecological 
stoichiometric principles, which predict that consumers that successfully sequester the 
nutrient in lesser supply relative to their needs should dominate and, in so doing, may 
stabilize at a new stable state (Glibert et al. 2011). Ecological stoichiometry theory predicts 
that systems that shift from low to high nitrogen-to-phosphorus ratios should sustain shifts 
from planktivores to piscivores or omnivores (Sterner and Elser 2002). As mentioned 
previously and in the PWAs’ submittal, Ecosystem Changes to the Bay-Delta Estuary: A 
Technical Assessment of Available Scientific Information, dated 16 August 2012, this is 
clearly what has happened in the Delta. Glibert et al. (2011) reviews several other estuaries 
where nutrient changes have caused similar effects on estuarine biota. 

Combined, the effect on the estuary’s food web has been severe – its apparent carrying 
capacity for multiple desired fish species has been reduced as the effects of an altered food 
web have cascaded upward to higher trophic levels (Kimmerer et al. 2000). Additional 
Delta through flows are unlikely to affect abundance of invasive bivalves, which shift their 
location in the estuary depending on salinity. Glibert (2010) points out that the current 
strategy of salinity management will likely show little beneficial effect on phytoplankton, 
zooplankton, or fish. 

2.4.3 Predation 

Predation may be an important stressor effecting delta smelt abundance. Maunder and 
Deriso (2011) found that predation was one of the main variables explaining variations in 
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delta smelt abundance, but MacNally et al. (2010) and Miller et al. (2012) described weaker 
effects of predation. It is known that striped bass prey on delta smelt due to their 
ubiquitous distribution in the estuary (Nobriga and Feyrer 2007), although it is uncommon 
in the gut contents of striped bass (Bennett 2005). Inland silversides Menidia berrylina are 
usually collected in areas where delta smelt spawn and may prey on their eggs and larvae 
(USFWS 1996; Bennett and Moyle 1996; Bennett 2005). Additionally, inland silversides 
may compete with juvenile and adult delta smelt for resources (Bennett 1996; 2005).  
Bennett and Moyle (1996) describe a negative relationship between silverside abundance 
and delta smelt abundance, particularly in dry years. Using qPCR genetic techniques, 
Cavallo et al. (2011) found DNA from delta smelt in the digestive tracts of 37% of the inland 
silversides collected during a Spring Kodiak Trawl survey. Further qPCR research confirms 
that inland silversides are a significant predator on delta smelt (UCD 2012). The chameleon 
goby Tridentiger trigonocephalus and yellowfin goby Acanthogobius flavimanus may also 
prey on delta smelt eggs and larvae and interfere with recovery of the species (USFWS 
1996). 

Although inland silversides were found to be the most prolific predator on delta smelt, 
ongoing predation research at U.C. Davis reveals that a greater number of species are now 
known to prey on delta smelt, including Chinook salmon, Siberian shrimp Exopalaemon, 
perch and sunfish, largemouth bass, Sacramento pikeminnow, and threadfin shad. 
Predators were caught both in near-shore and open waters (UCD 2012). 

2.4.4 Water Temperatures 

Water temperature was identified by Maunder and Deriso (2011) as a significant 
determinant of delta smelt abundance. The results of Maunder and Deriso (2011) suggest 
water temperatures throughout the estuary are becoming less hospitable for delta smelt. 
MacNally et al. (2010) found lesser effects of warmer summer temperatures and duration 
of water temperatures during spawning. Bennett (2005) noted that longer spawning 
periods in cooler years can produce more cohorts and on average higher numbers of adult 
delta smelt. In particular, warmer summer water temperatures have made the south Delta, 
especially the San Joaquin region, inhospitable for delta smelt (Nobriga et al. 2008).  
Indeed, since 1978, the Summer Townet Survey has experienced near-zero catches of delta 
smelt in the San Joaquin region (Nobriga et al 2008). Nobriga et al. (2008) found that 
summer water temperature acted somewhat like a switch, with capture probability 
decreasing abruptly at about 24oC. Wagner et al. (2011) predict that climate change will 
increase the number of days above delta smelt’s thermal maxima (especially along the 
Sacramento River) and may influence a shift to earlier spawning; however, as presented in 
the PWAs’ submittal, Ecosystem Changes to the Bay-Delta Estuary: A Technical Assessment of 
Available Scientific Information, dated 16 August 2012, the scientific literature supports a 
conclusion that reservoir releases do not influence water temperatures in the Delta or 
downstream. 

Water temperatures throughout most of the estuary are governed to a great extent by air 
temperature (Kimmerer 2004; Jassby 2008; Cloern et al. 2011). Therefore, while climate 
change models predict that water temperatures will continue to increase, reservoir 
releases are unable to moderate Delta water temperatures. 
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2.4.5 Entrainment 

While Maunder and Deriso (2011) noted entrainment of adult delta smelt as weakly related 
to its abundance2, numerous scientific articles reference the potential deleterious effects of 
entrainment in water operations facilities on delta smelt (Moyle 2002; Dege and Brown 
2004; Bennett 2005; Kimmerer 2008). Kimmerer (2008) is the only article that attempts to 
quantify these effects. Kimmerer estimated that entrainment losses may be 0-40 percent of 
the population throughout the winter and spring, but entrainment effects on year-over-
year abundance were found to be small and dwarfed by the 50-fold variation in summer-
fall survival. Miller (2011) discusses several upward biases in Kimmerer’s (2008) analyses 
for delta smelt.  Kimmerer (2011) responded to Miller (2011) and adjusted his estimates 
down. Grimaldo et al. (2009) acknowledge that there is no evidence of entrainment effects 
on the population of delta smelt.  

In its delta smelt BiOp, FWS undertook an analysis of raw salvage data to justify controls on 
water project operations to limit reverse flows in Old and Middle Rivers (OMR). There have 
been criticisms of the FWS’ OMR analysis, including a concern with the FWS’s failure to 
normalize the data. The FWS has since addressed this specific concern by normalizing its 
data in its recent submittal to the State Board for the ecosystem change and low salinity 
zone workshop. Other analysis, however, have showed that the FWS’ OMR approach is not 
necessarily the best way to management SWP-CVP project operations to avoid large delta 
smelt entrainment events. More specifically, Deriso (2011) demonstrated that entrainment 
of spawning adults can be predicted by including three-day turbidity averages into the 
trigger for OMR flow. Incorporation of the three-day turbidity averages provides an 
equivalent level of protection at far less water cost than the FWS’s analysis. In essence, the 
largest entrainment effects are avoided, consistent with Kimmerer’s (2008) contention that 
entrainment effects are episodic, and with Grimaldo et al. (2009), which found that delta 
smelt salvage happens within days of first flush turbidity events. 

FWS’ submission, Technical Staff Comments to the State Water Resources Control Board re: 
the Comprehensive (Phase 2) Review and Update to the Bay-Delta Plan, dated 16 August 
2012, contains substantial information on entrainment and the influence of turbidity on 
entrainment. Its annual salvage vs. OMR graphs (USFWS submittal, Figures 5-8, pp. 8-11) 
indicate that only in 1996, 1999, and 2004 does a discernible pattern exist; however, there 
is not agreement among the graphs on the level of negative OMR flow that induces higher 
levels of entrainment. In fact, in 2004 the pattern suggests that strongly positive OMR flow 
induces higher entrainment. USFWS concludes that there is no particular OMR flow that 
assures entrainment will or will not occur (USFWS submittal, p. 6, 11). The Deriso (2011) 
OMR and turbidity trigger analysis is not countermanded by USFWS’s submission. 

USFWS’s submission critiques the Maunder and Deriso (2011) life cycle model results on 
entrainment effects, suggesting it corroborates the Kimmerer (2008, 2011) contention that 
entrainment effects may be sporadically significant. USFWS failed to note that the 
entrainment estimates used in Maunder and Deriso (2011) are based on Kimmerer’s 2008 

                                                        
2 Thomson et al. (2010) found winter exports to be a weak predictor of delta smelt abundance. 
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paper and extrapolations thereof.  Therefore any interpretation USFWS makes about 
sporadic significance is really a conclusion based on Kimmerer’s (2008, 2011) work. 

USFWS correctly notes that Kimmerer (2008, 2011) assumes no compensatory density-
dependent effects for his entire sequence of years from 1980-2006. This assumption is 
questionable given that delta smelt abundance was recorded at very high levels during the 
1990s. If density dependence exists at high abundance, then several successive high 
abundance years would effectively “reset” the clock and erase any effect of past abundance 
patterns. Even ignoring this problem, there are other issues with the Kimmerer (2008) 
analysis. If the population is at a low level of abundance, then with conventional stock 
production models, such as the Ricker recruitment model, it is true that substantive 
compensatory density-dependence is unlikely to be occurring; however, it is also true that 
natural survival is maximized at a low level of abundance. The long-term equilibrium 
reduction in a population due to a constant annual mortality (e.g., entrainment) is 
dependent on the maximum intrinsic rate of growth. For example, in a Ricker model, 
expressed as B(t+1) = B(t)(1-F)exp(a-b*B(t)), the percent reduction in equilibrium 
abundance due to a given constant annual mortality “F” is equal to –ln(1-F)/a (Lawson and 
Hilborn 1985). The parameter “a” is the maximum intrinsic rate of growth. Note that the 
long-term equilibrium abundance does not depend on initial population size. 

If one were to fit a Ricker stock production model (which incorporates density-
dependence) to the years of data analyzed by Kimmerer (2008, 2011) then one would be 
able to extract the “a” parameter estimate  and use the formula provided above to calculate 
the long-term equilibrium population reduction for a given assumed average entrainment 
loss. Deriso (2009) did such an exercise using Ricker model parameters obtained by 
applying the Ricker model to 1987-2006 data (Deriso 2009, Appendix 1) to obtain the 
estimate a=0.92. Taking the same average entrainment loss of 10% as used by Kimmerer 
(2008, 2011), the long-term equilibrium abundance is calculated to be just 11% lower than 
if no entrainment occurred. This is far less than the 10-fold reduction in abundance 
estimated by Kimmerer (2008, 2011). 

USFWS also failed to note that, according to Maunder and Deriso (2011), even with no 
entrainment the population of delta smelt would have been predicted to decline to a very 
low level of abundance. As stated in Maunder and Deriso (2011): “Entrainment is estimated 
to have only a small impact on the adult abundance in either the lowest AICc model, which 
uses the estimated adult entrainment coefficient and the juvenile entrainment coefficient is 
zero, or the alternative model, in which both the juvenile and adult entrainment coefficients 
are set to one.” 

USFWS’s submittal (p. 30) references Kimmerer (2008) to support its contention that the 
agreement between Kimmerer’s entrainment estimates and particle tracking model (PTM) 
simulations based on the 20-mm Survey demonstrates that PTM provides a reliable 
estimate of entrainment for fish inhabiting the San Joaquin River and south Delta. 
Kimmerer’s (2008) results are certainly not evidence that PTM accurately predicts 
entrainment. As Kimmerer (2008, p. 22-23) himself wrote: “The variation in annual loss was 
related to flow conditions …, but this relationship is tautological, since Old and Middle River 
flow was used explicitly in the calculations,” and “The relationship of proportional loss to Old 
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and Middle River flow (by assumption) and inflow and export flow guarantees a relationship 
with X2.” That the PTM tracks OMR flow and Kimmerer’s (2008) estimates also track OMR 
flow is by no means validation for the use of PTM as a predictor of entrainment.  

The fact that the delta smelt decline can be explained by environmental covariates and not 
entrainment is shown in Figure 7 of Maunder and Deriso (2011), reproduced below as 
Figure 7, where the “alternative model” (right panel) which does not contain entrainment 
clearly demonstrates. 

 

 

2.4.6 Water Clarity 

Thomson et al. (2010) found that changes in water clarity weakly predicted delta smelt 
abundance. Researchers infer that because delta smelt are thought to have poor vision, 
turbid water improves visual acuity when seeking out prey (Boehloert and Morgan 1985 in 
Lindberg et al. 2000; Baskerville-Bridges et al. 2004) and provides some protection from 
predators (Moyle 2002). Delta smelt appear to prefer turbid waters during all life stages. 

It is widely acknowledged that turbidity levels in the estuary have declined.  One important 
causal factor is depletion of the erodible sediment pool by the late 1990s (Schoellhamer 
2011). Evidence of depletion is seen in the 36% step decrease in suspended sediment 
concentration beginning in 1999 (Figure 8). 

A

C

B

D

A
d

u
lt relative ab

u
n

d
an

ce (x1
0

3)
A

d
u

lt w
ith

o
u

t co
variates –

ad
u

lts w
ith

 co
variates

Figure 7. Estimates of abundance with and without covariates (coefficients of the covariates set to zero) (top panels) 
and ratio of the two with 95% confidence intervals (bottom panels, y axis limited to show details) from the lowest 
AICc (left panels) model that has Ricker survival from juveniles to adults (black lines) and a Beverton-Holt stock-
recruitment relationship (gray lines) and the alternative model (the model that has the fewest covariates and the AIC 
is less than two AIC units greater than the lowest AIC model) (right panels). 
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Schoellhamer (2011) describes 
riprapping of the banks of the 
lower Sacramento River and 
sediment trapping behind the 
rim dams and in flood control 
bypasses as contributors to the 
decreased sediment supply to 
the estuary, and notes that the 
sediment threshold that was 
crossed in 1999 is coincident 
with the POD decline that 
occurred immediately 

thereafter.  Delta smelt require 
turbid water for successful 
feeding and predator avoidance 
(Boehloert and Morgan 1985 in 

Lindberg et al. 2000; Moyle 2002; Baskerville-Bridges et al. 2004). 

Phytoplankton also contribute to turbidity levels. Numerous references in the scientific 
literature point to filtering of the water column by the Amur River clam P. amurensis 
leading to reduction of phytoplankton standing stock (see, e.g., Carlton et al. 1990; Alpine 
and Cloern 1992; Feyrer et al. 2003; Kimmerer 2006; Greene et al 2011). While 
phytoplankton is usually only a small component of suspended particulate matter in the 
Bay-Delta and northern San Francisco Bay (Cloern 1987; Jassby et al. 2002), invasion by 
the Amur River clam P. amurensis contributed to water clarity of the Suisun Bay region. 
Analysis of the available data shows that chlorophyll and turbidity levels tracked each 
other in the summer and fall prior to 1987 (Figure 9). 

Absent an erodible sediment pool, the main contributors to turbidity are wind-wave 
sediment resuspension and rainfall runoff from the watersheds below reservoirs.  Wind-
wave resuspension is greatest in spring and summer (Schoellhamer 2011) while rainfall 
runoff is limited primarily to the rainy season. Turbidity pulses are associated with rainfall 
runoff events (Grimaldo et al. 2009). 

Figure 8. Suspended sediment concentration, mid-depth, Point San 
Pablo. The vertical dashed line indicates when the step decrease 
occurred. From Schoellhamer (2011). The decline in suspended 
sediment is obvious starting in 1999. 
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Resuspension is a major source of turbidity levels in both San Pablo and Suisun Bay during 
the summer, due to reliable onshore winds (Ruhl and Shoellhamer 2004; Ganju et al. 2009; 
Ganju et al. 2011). The erodible sediment supply is greater in the shallows than in the 
deeper channels, resulting in greater resuspension in these areas (Ruhl and Schoellhamer 
2004). Unlike the Suisun Bay region, which is in an erosion phase (depletion of sediment), 
the Cache Slough region is in a depositional phase (accrual of sediment) (Morgan-King 
2012 IEP Science Workshop). The Cache Slough complex is a backwater region with dead-
end channels that trap sediments. The broad shallows are subject to wind-wave 
resuspension, keeping the region’s turbidity at levels satisfactory for delta smelt during all 
life stages. 

2.4.7 Physical Habitat 

Hamilton and Murphy (in prep) examined seven environmental attributes and six life 
stages for selection by delta smelt and found that its habitat includes areas characterized 
by complex bathymetry (with deep channels close to shallows and shorelines), with little 
submerged vegetation, but immediately bounded by tidal or freshwater marshlands (which 
appear to contribute to local production of diatom-rich phytoplankton communities that 
support adequate levels of delta smelt prey). And, they found that the full array of physical 
and biotic attributes necessary to consistently support delta smelt, set in spatial context 
with necessary adjacency and adequate temporal availability, is found in relatively limited 
areas of the contemporary estuary. Candidate areas for restoration of large emergent 
wetlands include eastern Montezuma Slough, the Sacramento River below Isleton, and the 
Cache Slough area. Furthermore, it appears that habitat conditions in areas in north Bay 
and Montezuma Slough could be improved with channel modifications, and increasing the 
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Figure 9. Historical trends in turbidity (black line), diatom density (red line), and chlorophyll-a (blue line) for 
Suisun Bay stations D4, D6, D7, D8. Turbidity and both diatom density and chlorophyll-a tracked fairly well until 
1988. The pattern has become more divergent since then. 
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availability of areas of shallow water in Grizzly Bay, Suisun Bay, and some stretches of the 
Sacramento River could improve habitat in those areas for young delta smelt. 

Less than five percent of the Bay-Delta’s historical wetlands and marshlands remain (TBI 
1998; Brown 2003). Historically, larger river channels were intermittently connected to 
nearby intertidal wetlands by a series of distributary channels that occasionally joined the 
river channels. Diking of distributary channels and conversion of wetlands to agriculture 
(and, to a lesser extent, urban and suburban development) eliminated most of the 
connecting distributary channels. The loss of the historical wetlands resulted in significant 
reductions in allochthonous carbon loading (e.g., from soil and plant material) in the 
estuary (TBI 1998). Increasing the areal extent of wetlands has the potential to restore at 
least some of the supply of allochthonous (soil generated) carbon (TBI 1998), which is an 
important nutrient for the lower trophic levels of the food web. Recognizing the need for 
additional wetlands habitat, the Bay Delta Conservation Plan anticipates the creation of a 
significant area of wetlands (BDCP 2012). 

2.4.8.1 Conceptual Model Suggesting a Relationship Between the Low-Salinity 
Zone and Delta Smelt Abundance 

The only X2 (low-salinity zone) conceptual model being discussed in recent years relates to 
a potential relationship between delta smelt abundance and X2 in the fall months. Until 
perhaps very recently, delta smelt conceptual models have not included spring X2. This has 
likely been the case because delta smelt are not one of the species with a known abundance 
relationship with winter-spring outflow (see, e.g., Jassby et al. 1995; Kimmerer 2002; 
Kimmerer et al. 2009), and because the current Delta Plan already contains spring outflow 
requirements. To a certain extent, the conceptual models may have changed very recently 
with the review of the results of the Fall Low-Salinity Habitat (FLaSH) studies, which has 
resulted in a suggestion that X2 location is biologically important to delta smelt all year, 
and thereby de-emphasizing fall as a season with special biological meaning. It is 
premature to consider whether a new conceptual model of a year-round X2 should be 
considered because the FLaSH study results are preliminary and largely inconclusive 
(FLaSH, 2012, p. 2). Irrespective of the preliminary FLaSH results, the fishery agencies have 
thus far only proposed an X2 in the fall months for delta smelt, so that is the only season 
addressed in detail in this analysis. 

The conceptual model regarding fall X2 is described in three papers: Feyrer et al. (2007), 
Feyrer et al. (2008), and Feyrer et al. (2011). Feyrer et al. 2008 is unpublished but it is 
relevant to the discussion because a preliminary draft was considered SWRCB Flow Report. 

There is new information relating to the fall X2 conceptual model that raises substantial 
questions about certain statements contained in the SWRCB Flow Report in the following 
areas: (1) “[t]he amount of habitat available to delta smelt is controlled by freshwater flow 
and how that flow affects the position of X2 (emphasis added);” (2) there is a demonstrated 
relationship between fall X2 position and abundance; and (3) the quantity of “habitat” that 
becomes available to delta smelt when fall X2 is positioned at particular geographic 
locations provides abundance benefits. (SWRCB Flow Report, pp. 108-110). These 
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statements do not accurately reflect the current state of the science, and would have to be 
highly qualified and labeled as uncertain and requiring further investigation. 

  The areas of concern and uncertainty can be summarized as follows: 

2.4.8.1.1 The Current Data Does Not Support a Direct Relationship Between the 
Location of X2 in the Fall and Delta Smelt Abundance 

Feyrer et al. (2007) investigated the relationship between certain water quality variables 
(salinity, turbidity and temperature) and delta smelt occurrence (distribution). Feyrer et al. 
(2007) also used a stock recruit model to examine the effect of those water quality 
variables on abundance between the pre-adult stage (FMWT) and subsequent juvenile 
stage (TNS). The fish abundance data was divided into two separate time periods – 1968-
1986 and 1987-2004. For 1987-2004 (but not 1968-1986), incorporating either salinity 
alone, or salinity in combination with turbidity, improved the fit of the model and explained 
more of the variance in the data set (Feyrer et al. 2007, pp. 727-728). Using Akaike’s 
Information Criteria, the model with the water quality covariates was preferred. 

Feyrer et al. (2008) sought to expand upon the analysis in Feyrer et al. (2007) by chaining 
together a series of modeled relationships, ultimately linking fall X2 position with 
abundance. This modeling chained together: (1) water quality variables and 
presence/absence (or occurrence) of smelt; (2) probabilities of occurrence and 
quantitative measures of suitable abiotic habitat; (3) suitable abiotic habitat area and X2 
position; and (4) suitable abiotic habitat (or X2) and subsequent abundance from pre-
adults (FMWT) to juveniles (TNS) the following year (see also Delta Smelt BiOp, pp. 235-
236, 268 (Figure E-22)). Feyrer et al. (2008) also developed several future outflow/fall X2 
scenarios and modeled the effects of those different scenarios on projected smelt 
abundance. 

The Feyrer et al. (2008) unpublished manuscript was substantially modified and evolved 
into the Feyrer et al. (2011) article, which was subsequently published. The statistical 
analysis in Feyrer et al. 2008 had been the subject of quite a bit of scientific debate, which 
included a critical review in the March 2010 National Research Council Report. The data 
analysis of fall X2 position and abundance in Feyrer et al. (2008) was ultimately dropped 
from the Feyrer et al. (2011) article. 

This discussion of Feyrer et al. 2007 and 2008 is particularly relevant to these State Water 
Board proceedings because the SWRCB Flow Report contains the above-described analysis 
that Feyrer et al. subsequently modified. 

2.4.8.1.2 There is Uncertainty Associated With the Method Used to Develop the Fall 
“Habitat Index” 

The revised Feyrer et al. (2008) analysis is contained in Feyrer et al.  (2011). This revised 
analysis linked together multiple relationships, e.g., water quality variables and 
presence/absence of delta smelt, probability of occurrence and a habitat index, and the 
habitat index and the average location of X2 in the fall months. The relationship that is 
proposed in Feyrer et al. (2011) is not a direct relationship between X2 and abundance, as 
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was proposed in Feyrer et al. (2008) (unpublished); it is a relationship between abundance 
and a habitat index. Feyrer et al. (2011) uses this abundance-habitat index relationship to 
support the premise that delta smelt habitat carrying capacity has declined as a result of 
changing X2 position in the fall.  Feyrer et al. (2011) concluded that the habitat index was 
reduced from 1967 through 2008, and under certain future development and climate 
scenarios.  There are several uncertainties associated with the analysis as presented in 
Feyrer et al. 2011. 

2.4.8.1.2.1 Data Analysis Is Circular 

The relationship between X2 and abundance in Feyrer et al. (2011) depends on a 
correlation between Feyrer et al.’s habitat index and FMWT abundance. This correlation is 
graphically shown in Figure 2C of Feyrer et al. (2011); however, this correlation appears to 
be an induced correlation. The habitat index was constructed using FMWT abundance data 
and then the habitat index was correlated against FMWT abundance. Consequently, both 
the X and the Y axes of the graph use a common data set. When the same data are being 
compared on both axes, some degree of statistical correlation will be induced. 

The habitat index:FMWT correlation should therefore be evaluated in light of the potential 
for induced correlation. Dr. Ken Burnham has estimated that the induced correlation could 
lead to a baseline correlation of R2=0.56. Feyrer’s habitat index:FMWT correlation has an 
R2=0.51, which suggests that the correlation between the habitat index and FMWT could be 
almost entirely induced. 

2.4.8.1.2.2 Data Analysis Did Not Include Cache Slough Abundance Data 

Feyrer et al.’s (2011) analyses did not include the delta smelt residing wholly in freshwater 
in the Cache Slough region. The FMWT did not begin sampling in the Cache Slough region 
until 2009. Feyrer et al.’s water quality:presence/absence analyses were all done using 
FMWT data before that survey began sampling in the Cache Slough region (Feyrer et al. 
2007 used FMWT data up to 2004; Feyrer et al. 2008 used data up to 2006; Feyrer et al. 
(2011) used data up to 2008). Since the Feyrer et al. conceptual model is that salinity is the 
driver of delta smelt distribution, not using the data from fresher areas, particularly the 
Cache Slough region where a large segment of the population reside, may have affected the 
results of the data analysis.  

Delta smelt inhabit the Cache Slough region year-round; their presence there is not a 
sampling artifact (Sommer et al. 2011; Delta Science Program Science News, April 2010).   

The size of the delta smelt population in the Cache Slough region is substantial, comprising 
as much as 42% of the current monitoring catch since 2005 (Sommer et al. 2009; Huggett 
2010). Sommer et al. (2009) also noted that delta smelt in the Cache Slough region are “a 
fairly substantial portion of the population as about 42% of the Spring Kodiak Trawl delta 
smelt catch during March-May since 2005 was in the Cache Slough complex”. Hamilton et 
al. (in press)recognized that the data suggest that the delta smelt population in Cache 
Slough may be a separate subunit of the population, and that current fish abundance 
surveys may not be sampling the full range of the species. Nearly 60% of the delta smelt 
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captured in the 2011 Summer Townet Survey were collected in the Cache Slough Complex. 
(Osborn 2012). 

2.4.8.1.2.3 The Feyrer et al. Studies Focused on Abiotic Variables 

The Feyrer et al. analyses only consider three abiotic variables – salinity and turbidity 
(Secchi depth) – and excluded all of the other abiotic and biotic variables that make up a 
species’ habitat and affect its abundance. The Feyrer et al. (2007) article acknowledged that 
biotic variables such as predation, food supply, and competition played a major role in 
distribution and habitat of smelt, but these variables were not included in the analysis. 

2.4.8.1.2.4 Life Cycle Modeling Shows That the Location of Fall X2 Has No 
Significant Effect on Delta Smelt Abundance 

Several life cycle or multi-variable models have been conducted to try to explain the 
abundance patterns of delta smelt, including the fall season. 

Thomson et al. (2010) used change-point analysis to investigate step changes in nearly two 
dozen candidate environmental factors which they surmised might have corresponded 
with the dramatic drop in delta smelt numbers that was sustained for much of the past 
decade, including the mean location of X2 in the fall months. No signal of effects on delta 
smelt from the location of X2 in the fall months was identified.  

MacNally et al. (2010) used multivariate autoregressive modeling to evaluate 54 fish-
environmental factor relationships, including the factors considered by Thomson et al., and 
found generally weak relationships, but enhanced signals from food availability and the 
position of the low-salinity zone in the spring.  

Maunder and Deriso (2011) used a multistage life-cycle model that varied levels of 
presumptive density dependence to consider environmental factors acting on delta smelt 
abundance and found a substantive deterministic relationship to be the availability of the 
fish’s food resources. The location of X2 in the fall months was not found to be a predictor 
of delta smelt abundance.  

The environmental data in that study were shared in a multi-variable regression analysis 
by Miller et al. (2012), who asserted that their specification of environmental variables was 
spatially and temporally rectified to better reflect within-Delta patterns of environmental 
variation. They found food availability to be a major signal and predation and entrainment 
to be minor signals, with overarching effects from density dependence.  

Like Thomson et al., none of the latter three studies found evidence of a relationship 
between the location of X2 in the estuary in the fall months and delta smelt abundance. 
There is no evidence that can be drawn from those studies of environmental stressors to 
support the link between the location of X2 in the estuary in the fall months and trends in 
delta smelt population numbers. 

Because the location of the low-salinity zone in the estuary has only a weak spatial 
relationship with the extent and quality of delta smelt habitat (NRC 2012), and because 
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there is no established connection between the location of the low-salinity zone in the 
estuary and the abundance of delta smelt (Thomson et al. 2010; MacNally et al. 2010; 
Maunder and Deriso 2011; Miller et al. 2012), the central premise of the fall X2 conceptual 
model has not been supported. Therefore, the two critical assertions of the Feyrer papers – 
that the location of the low-salinity zone in the estuary is linked to delta smelt population 
size (or performance or production) and that the extent of the low-salinity zone 
functionally represents the extent of habitat for delta smelt – deserve closer examination. 

2.4.8.1.2.5 The Conceptual Model Suggesting a Biological Rationale for Locating 
the Position of X2 near Suisun Bay Has Not Been Sufficiently 
Investigated 

The fall X2 conceptual model is based on the idea that the action will redistribute delta 
smelt downstream into Suisun Bay, thereby increasing opportunities for feeding and 
rearing (USFWS 2008). This model further contemplates that the redistribution of delta 
smelt downstream into Suisun Bay in the fall months will reduce the vulnerability of the 
fish to predation (USBR 2011). Available data do not support the conceptual model. The  
data do not reflect a relationship between the location of X2 in the Sacramento-San Joaquin 
Delta and the population dynamics of delta smelt or the location and extent of the low-
salinity zone and the extent of suitable habitat for the delta smelt. 
 
The conceptual model suggesting that Suisun Bay is the optimum habitat for delta smelt is 
contrary to an earlier conceptual model that Suisun Bay is a poor habitat area for delta 
smelt (the so-called “bad Suisun Bay” model). The bad Suisun Bay model became one of 
two conceptual models favored several years ago (Jones and Stokes 2006; Armor et al 
2007; House Committee on Resources 2007). It also appeared in the Interagency Ecological 
Program’s 2006-2007 POD work plan and its 2005 POD synthesis report. The conceptual 
model recognized that non-native species are causing detrimental changes to the Suisun 
Bay food web. Among those, the Amur River clam has had the largest known effect, greatly 
reducing primary production (see PWA submittal, Ecosystem Changes to the Bay-Delta 
Estuary: A Technical Assessment of Available Scientific Information, dated 16 August 2012, 
pp. 2-20). Introductions of various zooplanktons eaten by young fishes have further 
changed the pathways from primary production to fish (Baxter et al. 2010; Gould and 
Kimmerer 2010). Due to these known changes, and possibly others, the bad Suisun Bay 
conceptual model posits that Suisun Bay is a less suitable nursery than it used to be. The 
current fall X2 conceptual model based on work by Feyrer et al. (2007, 2011) does not 
consider food availability or quality. The PWAs’ submittal, Ecosystem Changes to the Bay-
Delta Estuary: A Technical Assessment of Available Scientific Information, dated 16 August 
2012, pp. 2-2 to 2-42, describes changes to the Delta’s and the low-salinity zone’s food web 
and how these have cascaded from primary productivity to higher trophic levels. 
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2.4.8.1.2.6 The Conceptual Model Suggesting That the Low-Salinity Zone Should 
Be Located in Any Particular Location is Based on the Model That 
Delta Smelt Distribution Changes in Relation to the Low-Salinity Zone 

The monitoring data does not necessarily support the conceptual model that delta smelt 
are distributed in relation to the low-salinity zone or that the delta smelt population’s 
distribution can be changed by moving the low-salinity zone downstream. 

Distributional data demonstrate that delta smelt inhabit areas of the estuary that are 
characterized by a wide range of salinity from freshwater to 10 psu and higher. Further, a 
recent affinity analysis3 (Hamilton and Murphy in prep) finds that the species is not limited 
by salinity and flows to the areas it occupies. Rather, other environmental factors define 
delta smelt habitat and the survival and future recovery of the species in the estuary. Delta 
smelt are found across the entire northern delta, in far western portions of Grizzly and 
Suisun bays that are characterized by higher salinity conditions, and east to areas beyond 
Cache Slough where tidal exchanges give way to fresh water on the lower Sacramento River 
(Merz et al. 2011). Survey returns for multiple life stages of delta smelt have now been 
analyzed with time-series data drawn from a collection of environmental factors in an 
effort to provide guidance to habitat conservation planning (Hamilton and Murphy in 
prep). Those analyses offer contingent explanations for patterns of delta smelt presence 
and absence in specific areas, and they show that delta smelt have the ability to seek out 
habitat and maintain presence in suitable locations across a wide range of salinity 
conditions and the broadest fluctuating seasonal flow scenarios. Delta smelt habitat 
requirements (more exactly, the physical and biotic conditions required for delta smelt 
presence) are multi-dimensional and for some environmental attributes of the Delta vary 
with life stage, reflecting the fact that smaller, younger fish have different resource needs 
and ecological tolerances than larger, more mature fish, and spawning fish seek out areas 
of the Delta not used by juveniles and pre-spawning adults. Maps of the distribution of 
delta smelt in the estuary offer insights into delta smelt habitat requirements that are 
salient to planning for restoration of habitat for the species (Figure 10). Larval and juvenile 
fish are found throughout the Sacramento River, while pre-spawning and spawning fish are 
found in fresher water circumstances, such as Suisun Marsh, Cache Slough, and portions of 
the lower Sacramento River. 

Broad parts of the estuary exhibit salinity conditions that are acceptable for delta smelt in 
all water years and under all contemporary flow regimes (Sommer and Mejia in review).  
But, while salinity and flows have negligible contributions to delta smelt habitat suitability, 
the same distribution   data indicate that large portions of the estuary are frequently 
unsuitable for delta smelt, particularly in the south and southeast Delta, where summer 
and fall water conditions can be too warm and too clear, and hence are unoccupied by delta 
smelt (Nobriga et al. 2008). 

                                                        
3 Affinity analysis in the biological sciences is widely used to examine habitat and species relationships (see, 
e.g., Deri et al. 2010). It is a data analysis and data mining technique that discovers co-occurrence 
relationships among activities performed by (or recorded about) specific individuals or groups. In general, 
this can be applied to any process where agents can be uniquely identified and information about their 
activities can be recorded. 
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2.4.8.1.2.7 Before X2 Can Be Used as a Surrogate for Delta Smelt Habitat Analyses 
Are Needed That Establish the Appropriateness of Using a Surrogate 

While Feyrer et al. (2007) noted that “other factors,” including several biotic and abiotic 
factors noted above, contribute to delta smelt habitat, and the delta smelt biological 
opinion recognized that multiple resources and other environmental factors contribute to 
the survival and recovery of delta smelt, the location of X2 in the estuary in the fall months 

Figure 10. Distribution of delta smelt across all regular fish monitoring surveys. From Merz et al. (2011), based on 
presence/absence of delta smelt. In all surveys, delta smelt are found across a broad range of the estuary. 
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is nonetheless used as a “surrogate” for delta smelt habitat for purposes of water 
management planning (USBR 2011). Because the extent of open waters is greater in 
western, downstream areas of the estuary, when X2 is located in those downstream areas 
the low-salinity zone is more expansive; hence, according to Feyrer et al. (2011) more 
habitat is available to support delta smelt. But, cannot justify using a surrogate for delta 
smelt habitat, rather than considering the full range of delta smelt habitat factors, until an 
analysis has been completed that supports using a surrogate.  

An ecological indicator or management surrogate is an environmental attribute that 
responds to relevant ecological conditions in a manner similar to a target species or its 
habitat, where direct data for the species or its habitat are too difficult, inconvenient, or 
expensive to gather (see Landres et al. 1988; Caro 2010). Default to inference from 
indicators or surrogates in natural resources management has intuitive appeal, particularly 
in the case of delta smelt, given its elusive behavior and residence in turbid waters that 
obscure its interactions with its environment, making it especially difficult to observe or 
census. It is standard practice for wildlife and fisheries managers to determine whether the 
presence of an indicator or surrogate accurately predicts the presence of the target before 
employing such planning proxies in management practice (Caro et al. 2005; Wenger 2008). 
The published literature cautions against using a surrogate without proper analysis 
establishing the appropriateness of the practice (Landres et al. 1988; Noon et al. 2005; 
Cushman et al. 2010). 

There are three criteria that an ecological indicator must fulfill to establish its validity, and 
ultimately its utility, for use as a surrogate that can represent habitat for a species in the 
context of conservation planning: 

1) the indicator must spatially and temporally occur over much of the geographic 
range of the target species and the distribution of its habitat; 

2) there must be an ecological mechanism by which the indicator controls or affects 
the distribution or abundance of the species, or extent or condition of its habitat; 

3) the status of the indicator must be anticipatory of changes in the status of the 
species or its habitat; that is, a measurable change in the indicator will predict 
changes in population numbers or habitat conditions that can be averted by 
management action.  

(consistent with Hunsaker et al. 1990; Dale and Beyeler 2001; Niemi and McDonald 2004.) 

Use of the location of X2 in the fall months as an indicator of the extent of habitat for delta 
smelt does not satisfy the above criterion.  An effective surrogate measure for delta smelt 
habitat must exhibit a high degree of spatial and temporal overlap with the distribution of 
delta smelt. Delta smelt can be found at salinities substantially greater than 10 psu, as 
much as five times the X2 concentration and well outside the 0.5-6 psu range often used to 
describe the low-salinity zone (see, e.g., Baxter et al. 2010). Moreover, delta smelt are found 
in substantial numbers in near-freshwater portions of the estuary in upstream areas 
unaffected by the location of the X2 isohaline. Furthermore, large portions of the estuary 
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that experience X2 and near-X2 conditions are not occupied by delta smelt in the fall 
months and have not been occupied during most of the past decade. Those areas appear 
not to be suitable for delta smelt, either because of inadequate turbidity conditions or 
seasonally excessive temperatures (Hamilton and Murphy, in prep.); hence, despite 
acceptable salinities, those extensive areas do not serve as habitat for delta smelt. 
Accordingly, on the one hand, the low-salinity zone, as described in the biological opinion, 
does not include significant areas of delta smelt habitat and, on the other hand, much of the 
low-salinity zone frequently does not support delta smelt. It therefore cannot be said that 
the low-salinity zone serves as “core habitat” area for the species, as suggested by Feyrer et 
al. (2007, 2011). 

2.4.8.1.2.8 Summer Townet Survey for 2012 Would Not Have Been Predicted by 
the Feyrer et al. (2007) Equation 

The Feyrer et al. (2007) fall X2 model is based on a predictive stock-recruit relationship 
between the FMWT of one year and the succeeding Summer Townet Survey, with the 
average location of X2 in the fall months used as a covariate (USFWS 2008, 2011). Using the 
Feyrer et al. model, the average position of X2 in the fall months of 2011 would be expected 
to produce a Summer Townet Survey index in 2012 of 7.99. The recently published 
Summer Townet Survey index for delta smelt is 0.9, which is far lower than would be 
predicted by Feyrer et al. (2007). That the prediction is off by an order of magnitude does 
not necessarily invalidate the fall X2 hypothesis; however, it does suggest that something 
else is contributing to delta smelt abundance. In addition, it raises significant uncertainty 
with respect to the utility of the fall X2 hypothesis for management purposes. 

2.4.8.1.2.9 Fall X2 Has Not Been Trending Upstream 

The fall X2 conceptual model is premised on a belief that there has been a continual 
increase in salinity (i.e., X2 moving upstream or east) since 1967; however, the years 
selected for the analysis influenced the results. By choosing the years 1967-2004, the 
agencies compared a very wet period to a very dry period. Whenever specific years within 
the hydrological record are selected for analysis, it is important to account for hydrology to 
avoid interpreting results that are purely hydrology driven as a change in water 
consumption. 

As explained by Dr. Paul Hutton during the PWAs’ oral presentation on ecosystem changes 
and the low-salinity zone on 16 August 2012, a statistically significant long term (water 
years 1922-2011) trend in X2 position shows that the Delta has been getting fresher in 
September. X2 position does not show a statistically significant long term trend upward or 
downward in October. Dr. Hutton noted that, although fall X2 position has been higher in 
recent decades, it is comparable with conditions observed prior to construction of Shasta 
Dam. It is possible that higher fall X2 positions in recent decades correspond to deepening 
of the estuary’s main channels due to erosion, which would increase gravitational 
circulation allowing higher salinity bay waters to intrude farther into the Delta. 

B 
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2.4.8.1.2.10 Summer X2 Conceptual Model Has Not Been Investigated and the 
Preliminary Data Does Not Suggest That Summer Has Particular 
Biological Importance 

The California Department of Fish and Game’s submittal, Written Information Responsive to 
the Workshop Questions for the Bay-Delta Workshop 1 - Ecosystem Changes and Low Salinity 
Zone, dated 16 August 2012, suggests that the State Water Board consider flow objectives 
for summer as well as fall. If scientific information emerges during the process of updating 
the Bay-Delta Plan indicating that summer low-salinity zone position is important to 
juvenile survival (p. 3), it should be noted that Nobriga et al. (2008), the only published 
study testing a summer X2 conceptual model, performed essentially the same analysis as 
Feyrer et al. (2007) except using the Summer Townet Survey rather than the FMWT. As a 
result, many of the same uncertain methodological approaches that are made by Feyrer et 
al. (2007) are repeated in Nobriga et al. (2008), including but not limited to use of X2 as an 
unverified surrogate of delta smelt habitat, induced correlation, and using a limited number 
of abiotic and biotic characteristics of actual delta smelt habitat. To its credit, Nobriga et al. 
(2008) did not limit its analysis to the post-1987 period. Nobriga et al. (2008) performed 
spatial (entire upper estuary and three regions) linear regression analyses of salinity, 
Secchi depth, and water temperature against relative abundance of delta smelt using the 
Summer Townet Survey; however, salinity was not found to be a significant predictor for 
any region either in terms of its predictive power (R2-value) or level of statistical 
significance (p-value). Therefore, Nobriga et al. (2008) offers little guidance to the State 
Water Board in considering modifications to the Bay-Delta Plan. 
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3.0 Other Pelagic Organisms 

This chapter addresses additional fishes and other pelagic organisms. For each of the 
species, there is considerable uncertainty as to whether additional reservoir releases or 
Delta through flows can achieve desired ecological functions. For some species, available 
survey data suggests that additional flow-based actions are unsupported. 

A brief summary of factors the State Water Board should consider when evaluating the 
need for Delta through flows for other pelagic organisms include: 

 Green sturgeon: There is currently little or no scientific basis that any specific 
action, such as further modifications of water project operations, will produce 
negligible, limited, or substantial benefits. Due to a fundamental lack of information 
and the status of green sturgeon and the factors that limit its numbers, additional 
research is an essential prerequisite to the identification of additional actions. 

 
 Splittail: No flow-related actions are supported by the scientific literature. The 

literature supports actions intended to increase the availability of floodplain rearing 
and spawning habitat for splittail and other fishes, including physical modifications 
to the Fremont Weir and Yolo Bypass to manage the timing, frequency, and duration 
of inundation of the Yolo Bypass with gravity flow from the Sacrament River, and to 
improve upstream fish passage past barriers that include Fremont and Lisbon weirs. 
 

 Starry flounder: Based on the Bay Study Otter Trawl data from the past three 
decades, starry flounder is not experiencing a decline in abundance in the San 
Francisco estuary. There is no scientific justification for the State Water Board to 
take any further actions to maintain the abundance of the fish. 
 

 American shad: American shad is a bay fish that spawns upstream in larger rivers; it 
is not an estuarine fish. Its weak relationship with the position of X2 in the Delta is 
likely an artifact of physical circumstances that co-vary with inter-year variation in 
Delta through flows. Similar to Chinook salmon, the use of the Delta by American 
shad is primarily a just-passing-through phenomenon on directional downstream 
migration to salt waters. The scientific literature does not support additional flow-
based actions. 
 

 Northern anchovy:  The central stock of northern anchovy is not experiencing a 
decline. 
 

 Striped bass: In spite of the effects of density dependence during their young 
juvenile stage, sufficient numbers of age-0 fish appear to be recruiting into the adult 
population. Likewise, recreational catch, the CDFG’s designated beneficial use for 
striped bass, has not declined. 
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California bay shrimp: Based on the Bay Study Otter Trawl data, California bay shrimp is 
not experiencing a decline. There is no reason to believe that further actions are needed to 
maintain its abundance. 
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3.1 Green Sturgeon 
 

3.2 Summary and Introduction 

The green sturgeon is an anadromous species that spawns in the main stem of the 
Sacramento and Feather rivers, and matures over the first few years of life in the 
Sacramento-San Joaquin Delta prior to emigrating to the ocean and large coastal bays 
where it spends most of its life (Beamesderfer et al. 2007). The more numerous white 
sturgeon, Acipenser transmontanus, is also present in the system. 

Green sturgeon in the San Francisco estuary were listed on April 7, 2006, as threatened 
under the Endangered Species Act (ESA) by the National Marine Fisheries Service (NMFS) 
(71 FR 17757).  The listing includes only the southern distinct population segment (DPS), 
which includes only the single Central Valley population. Green sturgeon from the northern 
DPS, occurring in coastal California and Oregon rivers from the Eel to the Umpqua, was not 
listed under the ESA. 

Information on the historical and current distribution and status of green sturgeon in 
California’s Central Valley is sparse. These fish were listed due to: (1) the concentration of 
spawning into one river system, which serves to increase the risk of catastrophic events 
causing extinction; (2) apparent loss of spawning habitat due to migration barriers; (3) 
suspected small population size (acknowledging a general lack of population data); and (4) 
exposure to a variety of direct and indirect risk factors related to widespread ecosystem 
alteration and suspected loss of habitat. 

Critical Habitat was formally designated by NMFS on September 3, 2008, in freshwater, 
marine, and coastal bay and estuary areas inhabited by green sturgeon (73 FR 52084). In 
fresh water, those include the Sacramento River upstream to Keswick Dam, the Yolo and 
Sutter bypasses, the lower Feather and Yuba rivers, and the Sacramento-San Joaquin Delta. 
Coastal marine waters included areas within 110 m depth from (and including) Monterey 
Bay north to the U.S.-Canada border. Coastal bays and estuaries included San Francisco, San 
Pablo, Suisun bays, and seven additional bays or estuaries between Humboldt Bay, 
California and Grays Harbor, Washington. 

NMFS has convened a green sturgeon recovery team and is in the process of developing a 
formal recovery plan; however, specific measures for conservation and recovery of this 
species have not yet been articulated. 

3.3 Green Sturgeon Biology 

Green sturgeon, Acipenser medirostris, are an ancient but elusive species that spend most of 
their lives in marine waters along the continental shelf from northern California to 
southern Canada (Moyle 2002). Like all sturgeon, they are long-lived and reach large sizes. 
Ages of 60-70 years are likely and sizes up to eight feet and 400 pounds have been 
recorded. Sexual maturity typically occurs at 15 to 25 years of age and four to five feet in 
length. Green sturgeon are bottom-oriented feeders and eat a variety of invertebrates and 
fish. 
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Spawning occurs at specific sites in the main stem Sacramento River between Hamilton 
City (mile 199) and Keswick Dam (mile 301). Adults are occasionally observed in the 
Feather River and spawning was documented there in 2011. Moyle et al. (1992) surmised 
that spawning may take place or once did in the lower San Joaquin River; however, there is 
currently no direct evidence of green sturgeon occurrences or spawning in the San Joaquin 
River upstream from the Delta (Adams et al. 2002; Beamesderfer et al. 2004, 2007). 

Only a portion of the adult population spawns in any year, but green sturgeon return to 
spawn in the Sacramento River every year (see Figure 11). Due to their large size, female 
sturgeon are very fecund and can produce large numbers of offspring under favorable 
conditions. The success of spawning and subsequent survival varies considerably from 
year-to-year due to environmental conditions. The long sturgeon life span is adapted to 
accommodate episodic recruitment; green sturgeon abundance appears to fluctuate over 
time in response to intervals of high and low recruitment. 

 

The Delta and other areas, including San Francisco, San Pablo, and Suisun bays, provide 
important rearing habitat for juveniles and sub-adults, and areas through which sub-adults 
and adults migrate (Adams et al. 2002; NMFS 2009). 

3.4 Environmental Factors Affecting Green Sturgeon 

Factors currently limiting green sturgeon status are poorly understood. While a variety of 
potential limitations have been identified, the population-scale impacts of specific factors 
have not been quantified. Known or suspected limiting factors identified by NMFS (Adams 
et al. 2002, 2007; NMFS 2005, 2008) include: 

 

Figure 11. The green sturgeon life cycle. From Beamesderfer et al. (2007). 
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3.4.1 Impassable Dams 

Upstream migration is blocked at Keswick and Shasta dams on the Sacramento River and 
the Fish Barrier and Oroville dams on the Feather River. Areas upstream from these 
barriers are believed to have historically supported green sturgeon spawning (Mora et al. 
2009). 

3.4.2 Migration Barriers 

A number of structures may impede upstream migration of adults under certain conditions. 
Red Bluff Diversion Dam historically blocked migration during the irrigation season when 
control gates were in place; however, 2011 was the last year of gate operation. Adults can 
be attracted into the Yolo Bypass in high flow years and may become stranded below the 
Fremont Weir. The Delta Cross Channel gates may impede passage under certain 
conditions. Shanghai Bench and the Sunset Pumps diversion appear to impede passage in 
the lower Feather River under low-flow conditions. 

3.4.3 Fishing Impacts 

Because of their long life span and delayed maturation, sturgeon are very susceptible to 
overfishing. California sturgeon populations collapsed due to unregulated commercial 
fishing prior to 1900; numbers gradually increased over the next century. Sport fisheries 
for green sturgeon in California and commercial fisheries for green sturgeon in Oregon and 
Washington have been closed following listing. Fish are still subject to incidental handling 
in various fresh water and marine, sport and commercial fisheries, and illegal harvest 
occurs in fresh water during spawning migrations. 

3.4.4 Water Diversions 

Entrainment and impingement by water diversions has been identified as a threat, but the 
degree to which those factors affect the abundance of green sturgeon or the continued 
existence of the Southern DPS remains uncertain (71 FR 17757). Variable numbers of 
juvenile sturgeon are seen in fish salvage at the CVP Tracy and SWP Skinner Fish Collection 
Facilities in some years (Figure 12). Salvage estimates of green sturgeon numbered in the 
hundreds or thousands until the 1980s, but have averaged fewer than 100 green sturgeon 
per year since that time. 

3.4.5 Flow and Temperature Effects 

Insufficient flow and high water temperatures were identified by NMFS as risk factors but 
specific information on the significance of these factors to green sturgeon abundance and 
the continued existence of the species is lacking (NMFS 2009). Water temperatures of less 
than 20°C (68°F) are required for successful spawning and egg incubation (Beamesderfer 
et al. 2007 and references therein). Unfavorable temperatures for spawning and egg 
incubation were historically documented downstream from Shasta Dam, but have been 
ameliorated by temperature controls. Recruitment of white sturgeon in some populations 
has been correlated to stream flows during spring (Duke et al. 1999). Attempts to regulate 
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flows to 

improve recruitment of white sturgeon in Pacific Northwest populations have been 
unsuccessful. The mechanism(s) by which flow affects green sturgeon is unclear. 

3.4.5 Ecosystem Changes 

Large-scale ecological changes in the Delta ecosystem have resulted from a combination of 
physical landscape changes, food web alteration,  and exotic species introductions. NMFS 
has identified exotic species as potential risk factors, and speculated on predation by 
striped bass. The net impact of multiple ecosystem changes on green sturgeon is uncertain 
and likely complex. Notably, the point at which the food web in the estuary was 
substantially modified by the proliferation of the Amur River clam coincided with the 
decline in green sturgeon juveniles as indexed by water-project salvage numbers, 
suggesting that ecosystem changes could have a significant impact upon population 
abundance. 
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Figure 12. Estimated annual salvage of green sturgeon at State Water Project (SWP) and federal Central Valley 
Project (CVP) fish facilities in the South Delta. Data from California Department of Fish and Game. 
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4.0 Sacramento Splittail 
 
4.1 Introduction and Summary 

Meng and Moyle (1995) concluded that the geographic range of splittail had been reduced 
to a fraction of its former extent; attributing this to a loss of low-salinity habitat in Suisun 
Bay and Suisun Marsh. Based on Meng and Moyle (1995) and other sources, the USFWS 
took action to list the splittail as a threatened species in 1999. Since then, it has been 
determined that splittail’s range is greater than was previously thought (USFWS 2010). 
Subsequent wet years with significant floodplain inundation events caused its abundance 
to rebound, leading to a remanding of its threatened status in 2003, and eventual reversal 
of its listing under the federal Endangered Species Act in 2010. 

Entrainment of splittail in the fish collection facilities increases in hydrologically wet years 
when floodplain inundation events result in a spike in population size and decreases during 
hydrologically dry years when recruitment is low (Sommer et al. 2007). No evidence is 
available that indicates that water project operations have a significant effect on splittail 
population size and trends (Sommer et al. 2007). 

The abundance of age-0 splittail has not shown a discernible change in either adult or 
juvenile abundance after 1987, the point at which the food web in the estuary was 
substantially modified by the proliferation of the Amur River clam P. amurensis (Sommer et 
al. 1997; Kimmerer 2002). 

No flow-related actions are supported by the scientific literature. The literature supports 
actions intended to increase the frequency and persistence of Yolo Bypass inundation. 

4.2 Sacramento Splittail Biology 

Sacramento splittail, Pogonichthys macrolepidotus, is a native cyprinid that can live 8-10 
years (Moyle 2002). Splittail are physiologically hardy and able to tolerate a relatively wide 
range of temperature, salinity, and dissolved oxygen levels (Young and Cech 1996), 
including a broad tolerance for salinities of 10-18 psu, which avails them to slow moving 
sections of rivers and sloughs in the Delta (Moyle 2002; Moyle et al. 2004). Their range 
encompasses much of the Delta tributaries below the major rim dams, the lower Napa 
River, and the lower Petaluma River, where a self-sustaining population apparently exists 
(Moyle 2002; Sommer et al. 2007, 2010). The Sutter and Yolo Bypasses are apparently 
important spawning areas (Moyle 2002). In the Delta, they are most abundant in the north 
and west when populations are low, but are more evenly distributed in years in which they 
realize high reproductive success. The opossum shrimp N. mercedis is an important food 
resource for splittail, although after the invasion of the Amur River clam their diet has 
increasingly focused on bivalves and amphipods (Sommer et al. 2007). While on 
floodplains, aquatic invertebrates, such as chironomid midge larvae, make up the largest 
portion of their diet (USFWS 2010). 

Splittail use inundated floodplains in spring as spawning habitats (Sommer et al. 1997; 
Moyle 2002), requiring flooded vegetation for both spawning and rearing. Strong year 
classes are associated with wet-year inundation events (Sommer et al. 2007), with the 
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abundance of age-0 fish being relatively low during dry years (Figure 13). Floodplain 
inundation represents the primary factor that determines spawning success (Sommer et al. 
1997). When the combined flow of Sutter Bypass and the Sacramento and Feather rivers 
raises water levels at Fremont Weir to an elevation of 32.8 feet (which typically occurs 
when combined total flow from these sources surpasses 55,000 cfs), flows begin to enter 
Yolo Bypass (BDCP 2012). Adults begin a gradual upstream migration towards spawning 
areas sometime between late November and late January (Moyle et al 2004). As floodplains 
drain down, a downstream dispersal phenomenon occurs. 

4.3 Environmental Factors Affecting Sacramento Splittail 

The most significant factor predicting splittail abundance is the availability of inundated 
floodplain over a sufficient amount of time to allow for successful spawning and rearing. 
Feyrer et al. (2006) noted that manipulating flows entering Yolo Bypass, such that 
floodplain inundation is maximized during January-June, might provide the greatest overall 
benefit for splittail, especially in relatively dry years when overall production is lowest. 
Inundation for at least a month appears to be necessary for a strong year class of splittail 
(Sommer et al. 1997). 
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Figure 13. Age-0 splittail (>24 mm FL) abundance and distribution based on U.S. Fish and Wildlife Service 
beach seine survey, 1978-1982, 1992-2002. Data are mean catch per haul by region for May and June. Regions 
follow Sommer et al. (1997), except for those upstream of the Delta: (1) lower Sacramento River 
(“LowSac.R”—Feather River [river kilometer 129] to American River [river kilometer 97]); (2) middle 
Sacramento River (“MidSac.R.”—Butte Creek [river kilometer 222] to Knights Landing [river kilometer 145]); 
and (3) Upper Sacramento River (“UppSac.R.”—Ord Bend [river kilometer 296] to Colusa State Park [river 
kilometer 239]). Sampling in the latter three regions began in 1981. From Sommer et al. (2007). 
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5.0 Starry Flounder 
 

5.1 Introduction and Summary 

Since 2002, the starry flounder abundance index has been from 300-500. Based on the Bay 
Study Otter Trawl data from the past three decades, starry flounder is not experiencing a 
decline in abundance in the San Francisco estuary. There is no scientific justification for the 
SWRCB to take any further actions to maintain the abundance of the fish. 

5.2 Starry Flounder Biology 

Starry flounder, Platichthys stellatus, is a flatfish found along the Pacific Coast from Santa 
Barbara County northward to the Alaskan Peninsula (Wang 1986). In the Bay-Delta estuary 
it is one of the most common flatfish found (Wang 1986).  It is a fish of San Francisco Bay 
that can survive in fresh water – it has been observed in San Luis Reservoir, arriving there 
via transport in the California Aqueduct or San Luis Canal (Moyle 2002) – making some use 
of the lower Delta for rearing of young. Spawning occurs in late fall and early spring 
months in shallow coastal waters or tidal sloughs (e.g., Elkhorn Slough) (Wang 1986). 
Young juveniles apparently are pelagic, gradually settling on the bottom by the end of April. 
While in the estuary, young fish eat amphipods and copepods (Moyle 2002). 

The Bay Study Otter Trawl is the best monitoring survey for detecting starry flounder, 
because the Otter Trawl monitors the bottom of the water column. The Otter Trawl 
indicates that starry flounder exhibit periods of dramatic variation in abundance in San 
Francisco Bay (see Figure 14), which may be cyclical – although anomalies in survey 
returns that result from gear-related sampling phenomena may affect returns. 

5.3 Environmental Factors Affecting Starry Flounder 

Starry flounder spend little of their lives in the estuary. Since their diet while in the estuary 
consists of amphipods and copepods, reductions in the abundance of these food resources 
could reduce numbers there. The damage already done to the ecosystem’s food web by the 
invasive Amur River clam is well documented (see, e.g., Carlton et al. 1990; Alpine and 
Cloern 1992; Kimmerer et al. 1994; Feyrer et al. 2003; Kimmerer 2006; Greene et al 2011). 
Kimmerer et al. (1994) reported a 69 percent drop in chlorophyll concentration after the 
Amur River clam became abundant. Greene et al. (2011) found that P. amurensis feeds 
heavily on microzooplankton (e.g., ciliates), which are a food resource for 
macrozooplankton (e.g., copepods). As a result, the Amur River clam may disrupt links 
between these trophic levels (Greene et al. 2011). 

In the 1980s, increasing anthropogenic discharges of nitrogen were coupled with 
reductions in phosphorus loading in the estuary (Van Nieuwenhuyse 2007; Glibert et al. 
2011). Changes in nutrient forms and ratios caused stoichiometric changes in lower trophic 
levels, away from a diatom-based food web and toward a less efficient bacterial food web 
(Glibert 2010; Glibert et al. 2011). According to Glibert (2010), the decline in diatoms, 
which began in 1982, is highly correlated with the increase in ammonium loading. Diatoms 
prefer and, under some conditions, physiologically require, nitrate over ammonium. As 
nitrate became less available relative to ammonium in Suisun Bay, a competitive advantage 
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shifted to phytoplankton taxa that can more efficiently use reduced forms of nitrogen (Berg 
et al. 2001; Glibert et al. 2004, 2006; Brown 2009). Among the phytoplankton groups that 
replaced diatoms in the estuary, cyanobacteria and many flagellates, phytoplankton groups 
that do not support key food web linkages, show a preference for chemically reduced forms 
of nitrogen. Today the Suisun Bay region is dominated by cyanobacteria and flagellates 
(Brown 2009). These changes in phytoplankton composition are consistent with ecological 
stoichiometric principles, which predict that consumers that successfully sequester the 
nutrient in lowest supply relative to their needs should dominate and, in so doing, may 
stabilize at a new stable state (Glibert et al. 2011). 

Combined, the effect on the estuary’s food web has been severe – its carrying capacity has 
been reduced as the effects of an altered lower food web have cascaded upward (Kimmerer 
et al. 2000). Importantly, flows apparently do not alter estuarine nutrient ratios; 
accordingly, Glibert (2010) states that the current strategy of salinity management will 
likely show little beneficial effect on phytoplankton, zooplankton, or fish. Rather, regulation 
of effluent nitrogen discharge through nitrification and denitrification offers an alternative 
management strategy with a track record of success in other estuaries (see the PWA 
presentation on ecosystem changes and the low-salinity zone, Ecosystem Changes to the 
Bay-Delta Estuary: A Technical Assessment of Available Scientific Information, pp. 2-23 to 2-
39). 
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Figure 14. Annual abundance of age-0 starry flounder. Data from Bay Study Otter Trawl. Figure from IEP 
Newsletter, 2012(1), p. 24. Starry flounder appear to undergo cyclic abundances. 
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6.0 American Shad 
 

6.1 Introduction and Summary 

American shad is not an estuarine species. It spawns and rears to adulthood in areas above 
the estuary in the open waters of larger rivers (Moyle 2002). Variation in population 
numbers drawn from the Fall Midwater Trawl index indicates that through-Delta flows do 
not determine American shad population dynamics. 

6.2 American Shad Biology 

The American shad, Alosa sapidissima, is an anadromous fish that was intentionally 
introduced into California in the late 1880s. They are found along the Atlantic seaboard 
from Labrador to Florida and are one of the most abundant anadromous fish on the east 
coast. Since its introduction in California, it has become an important sport fish in the San 
Francisco estuary. American shad range from Alaska to Mexico and use major rivers 
between British Columbia and the Sacramento-San Joaquin watershed for spawning (Moyle 
2002). 

At age-3 to age-5, American shad migrate from the ocean into freshwater reaches of the 
Sacramento and San Joaquin rivers during March-May, with peak migration occurring in 
May (Stevens et al. 1987). American shad spawn in open waters and do not often move up 
into the lesser tributaries of the large rivers that they ascend. The major spawning run in 
California occurs in the Sacramento River up to Red Bluff and in the adjoining American, 
Feather, and Yuba rivers, with lesser use of the Mokelumne, Cosumnes, and Stanislaus 
rivers and the Delta (Moyle 2002). Spawning takes place from May-July (Stevens et al. 
1987). American shad are not semalparous (spawn only once and then die) like salmon; 
they will return annually up to seven years of age to spawn (Stevens et al. 1987), although 
the majority of spawners are first-time participants (Moyle et al. 2002). The young migrate 
seaward through the estuary from June through December (Stevens 1966). It is 
hypothesized that river flows affect the distribution of first time spawners, with numbers 
of newly mature adults spawning in rivers proportional to flows at the time of arrival 
(Stevens et al. 1987), with spawning taking place in the main channels of the rivers and 
flows washing negatively buoyant eggs downstream. 

The lower Feather River and the Sacramento River from Colusa to the northern estuary 
provide the major summer nursery areas for larvae and juveniles, although there is some 
evidence that at least some American shad spawn in the estuary itself (Stevens 1966) – 
note that American shad juveniles can tolerate an abrupt switch to sea water (Moyle 2002). 

Flows are hypothesized to affect the downstream transport of young, with wet years 
moving the location of the concentration of young and their nursery area further 
downstream (Stevens et al. 1987); however, it is unclear how enhanced flows provide 
benefits to the American shad population. Out migration of young American shad through 
the estuary occurs June-November (Stevens 1966). During migration to the ocean, young 
fish feed upon zooplankton, including copepods, mysids, and cladocerans, as well as 
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amphipods (Stevens 1966; Moyle 2002). Most American shad migrate to the ocean by the 
end of their first year, but some remain in the estuary (Stevens et al. 1987; Moyle 2002). 

Year-class strength correlates positively with river flow during the April-June spawning 
and nursery period (Stevens and Miller 1983.) Age-0 American shad exhibit a weak 
abundance relationship with the location of the X2 isohaline in the estuary (Kimmerer 
2002). After 1987, the relationship changed such that abundance increased per unit flow 
(Kimmerer 2002; Kimmerer 2009); the X2 location versus abundance relationship has 
remained intact in recent years (Kimmerer et al. 2009.) In addition, Kimmerer et al. (2009) 
found that American shad exhibit a relationship with salinity and water depth that 
appeared consistent with its relationship of abundance to X2 location; that is, slopes for 
abundance versus X2 and salinity and depth versus X2 are similar, which provides some 
support for the idea that increasing the extent of areas of specific salinity and depth could 
explain the X2-abundance relationship for the species. Stevens and Miller (1983) 
hypothesized that the apparent general effect of high flow on all of the species they 
examined, including American shad, is to increase the extent and quality of nursery areas, 
thereby more widely dispersing young fish, thus reducing density-dependent mortality. 

6.3 Environmental Factors Affecting American Shad 

An examination of the annual abundance index for American shad indicates the 
population’s fresh water residency undergoes wide swings, with nearly biennial peaks and 
troughs (Figure 15). As shown by Figure 15, low index values experienced from 2007-2011 
are not unusually low when compared to early to mid-1970s returns. For water flows to 
produce such an effect, alternating extreme events producing boom-or-bust conditions 
would have to occur. Such has not been the case. More likely, cycling numbers of American 
shad may be an artifact of the timing of American shad’s movements through the estuary in 
relation to the Fall Midwater Trawl. Stevens and Miller (1983) acknowledged that the Fall 
Midwater Trawl index is affected by imprecision in data derived from generalized sampling 
techniques that are not designed to accommodate species-specific ecological phenomena. 

While Kimmerer et al. (2009) found that American shad exhibit an abundance relationship 
with X2 location in the Delta, the relationship is weak, which indicates little support for the 
idea that increasing habitat by moving X2 downstream will benefit American shad. Stevens 
and Miller (1983) suggest that American shad abundance is affected by estuary inflows. 
That is consistent with Moyle (2002), who reported that shad are able to adjust the timing 
of their spawning runs to the timing of river outflows. The biennial nature of the Fall 
Midwater Trawl abundance index for American shad belies a substantive influence of flows 
and instead suggests that American shad, as a long-lived species, can choose their spawning 
years to correspond with wet years. 
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Figure 15. Annual index of American shad abundance. Data from Fall Midwater Trawl. 
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7.0 Northern Anchovy 
 

7.1 Introduction and Summary 

The northern anchovy is abundant off the coast of California and is ecologically and 
economically important in the coastal waters of southern California. Three stocks of 
northern anchovy have been identified -- northern, central and southern. California fishery 
harvests are taken from the central stock, which ranges from northern Baja to San 
Francisco. Management of northern anchovy is shared by the Pacific Fishery Management 
Council and the National Marine Fisheries Service. Data do not indicate that the northern 
anchovy is experiencing a decline. 

7.2 Northern Anchovy Biology 

In the winter, northern anchovy, Engraulis mordax, usually move to deeper water offshore, 
and in the spring they return to inshore shallow waters. Spawning is mostly within 60 
miles of the coast, although it has been recorded up to 300 miles offshore. Anchovies stay 
near the bottom in the daytime and come to the surface at night. They spawn mostly in the 
ocean at depths less than 10 meters, at water temperatures of 12-15oC (Kucas 1986). 
Anchovies spawn throughout the year, although most spawn in winter and spring (Kucas 
1986). While the northern anchovy diet consists of zooplankton, phytoplankton, and fish, it 
is primarily a planktivore (Kucas 1986; Kimmerer 2006). 

7.3 Environmental Factors Affecting Northern Anchovy 

The response of northern anchovy to changed conditions in the estuary is noteworthy; its 
recent  shift in distribution appears to have been a direct behavioral response to reduced 
food. Prior to invasion by the Amur River clam, summer-long phytoplankton blooms were 
common. In 1987, the clam eliminated these blooms, leading to a redistribution of northern 
anchovy toward higher salinity, reducing its summer abundance in the low-salinity zone by 
94% (Kimmerer 2006). 

The decline in anchovies in the estuary’s low-salinity zone, but not in areas of higher 
salinity, occurred in striking coincidence with the decline in chlorophyll-a. The bulk of the 
northern anchovy population, before the recent decline was documented, occurred at high 
salinity – 95% of the catch before 1987 occurred at >10 psu salinity (Kimmerer 2006). 
Hence, their declines in the low-salinity zone most likely occurred directly in response to 
declines in food availability, since there has been no long-term change in the distribution of 
the low-salinity zone within the estuary in the spring. Furthermore, chlorophyll-a 
concentrations did not change appreciably in San Pablo Bay (Kimmerer 2004), a higher-
salinity region where anchovy abundances have remained high. 

Kimmerer (2006) explored several possible explanations for the dramatic and rapid 
decline in northern anchovy in the low-salinity zone in 1987 and thereafter, including 
climate variability and biomass, catch, or abundance of northern anchovy on the California 
coast, and concluded that the most parsimonious explanation for the decline in anchovy 
abundance in the low-salinity zone is as a direct or indirect response to the decline in 
chlorophyll-a. 
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The shift of the population away from a region that had become inhospitable is not 
surprising. In the lower Hudson River, several open-water fish species shifted seaward 
following a reduction in chlorophyll concentration due to the introduced zebra mussel 
Dreissena polymorpha (Strayer et al. 2004 in Kimmerer 2006). Similar behavioral shifts of 
northern anchovy in apparent response to chlorophyll concentration (or its covariates) 
have been noted off Baja California (Robinson 2004 in Kimmerer 2006). Behavioral shifts 
in the geographic position of populations in response to food availability is a simpler 
explanation for observed phenomena that recognizes the ability of animals to move from 
unfavorable to favorable locations. 
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8.0 Striped Bass 
 

8.1 Introduction and Summary 

Striped bass are a non-native species. 

8.2 Striped Bass Biology 

Striped bass, Morone saxatilis, were deliberately introduced in California from the East 
Coast, where they are found from the Gulf of St. Lawrence to Alabama. The initial 
introduction took place in 1879, when 132 fingerling bass were brought to California by 
rail from the Navesink River in New Jersey and released near Martinez. Fish from this lot 
were caught within a year near Sausalito, Alameda, and Monterey, and others were caught 
occasionally at scattered locations for several years afterwards. There was much concern 
by the Fish and Game Commission that such a small number of bass might fail to establish 
the species, so a second introduction of about 300 striped bass was made into lower Suisun 
Bay in 1882. 

In a few years, striped bass were being caught in California in large numbers. By 1889, only 
a decade after the first lot of eastern fish had been released, bass were being commercially 
harvested and sold in San Francisco markets. In another decade, the commercial net catch 
was averaging well over a million pounds a year. In the belief that it would enhance the 
sport fishery, in 1935 the Fish and Game Commission declared striped bass to be a game 
fish and all commercial fishing for striped bass was halted. 

Striped bass have been monitored more extensively than perhaps any other Bay-Delta fish. 
The Fall Midwater Trawl was designed to determine the relative abundance and 
distribution of age-0 striped bass in the estuary. It has sampled portions of the estuary 
annually since 1967 (with the exceptions of 1974 and 1979). Currently, it samples 122 
stations each month from September to December, and a subset of these data is used to 
calculate an annual abundance index. The 122 stations range from San Pablo Bay upstream 
to Stockton on the San Joaquin River, Hood on the Sacramento River, and the Sacramento 
Deep Water Ship Channel in the upper estuary. Oblique tows from bottom to top are 
conducted at each of the stations. 

8.3 Environmental Factors Affecting Striped Bass 

The FMWT Index for age-0 striped bass shows a dramatic and persistent decline starting in 
1987 (Figure 16). Bioenergetic modeling provides evidence that major changes to the 
estuarine food web are primarily responsible for the decline (Nobriga 2009). Kimmerer et 
al. (2000) also suggests a decline in the estuary’s carrying capacity due to food limitation. 
Feyrer et al. (2003) noted a major decline in mysid abundance caused by the invasion of 
the Amur River clam as a cause of the decline in striped bass abundance and a switch to 
piscivory by earlier age classes. Bryant and Arnold (2007) suggest the most significant 
impact of food limitation occurs during first-feeding by larvae in the spring, since Summer 
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Townet Survey data indicates that striped bass diets have adjusted to changes in the 
summer food availability. 

At least part of the decline in age-0 striped bass abundance can be explained by an 
apparent long-term distributional shift away from channels, which are sampled by the 
FMWT, toward shoal areas, which are not (Schroeter 2008; Sommer et al. 2011). Therefore, 
at least part of the decline in the FMWT Index is attributed to under-sampling of striped 
bass habitat. Reduced food availability in pelagic habitat caused by the invasion of the 
Amur River clam is hypothesized by Sommer et al. (2011) to be the major cause of the 
distributional shift. Glibert et al. (2011) found that both ammonium levels and nutrient 
ratios explained the variation in age-0 striped bass abundance as measured by the FMWT. 

A decline in the number of age-0 striped bass would manifest itself as reduced recruitment 
(Kolhorst 1999), but the overall population of adult striped bass has not shown a decline 
since 1987 (Figure 17), nor has the population of sub-adult fish (Figure 18). Striped bass 
have a wide-ranging diet, consuming copepods, planktonic crustaceans (e.g., Daphnia spp.), 
cladocerans, mysids, amphipods, small fishes, and other prey (Bryant and Arnold 2007). 
Only age-0 fish have a more constrained diet (they are non-piscivorous at smaller sizes). 
The fact that neither sub-adult nor adult striped bass numbers have declined over decades 
suggests that the number of age-0 fish recruiting to the adult population is sufficient to 
ensure a robust and apparently sustaining population. Recreational catches of striped bass 
also have not declined from the early 1980s (see Figure 17). An apparent surge in 
recreational catch happened in the late 1990s, but without a subsequent pattern. 

Kimmerer (2002) found that survival of striped bass from eggs to 38 mm is increased as 
the location of the X2 isohaline shifts downstream in the estuary. Given that age-1 through 
age-6 fish have not experienced overall declines in numbers, little is gained from a 
population perspective by shifting X2 downstream. Density dependence offers an 
explanatory mechanism whereby the number of age-0 striped bass is delinked from the 
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            Figure 16. Fall Midwater Trawl index for striped bass. 
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number of older fish. Kimmerer et al. (2000) found a density-dependent survival 
bottleneck during the first three to four months of life, and offered as reasonable 
candidates for causation density dependence, food limitation, cannibalism, response of 
predators, and migration. The study identified food limitation as the most likely candidate.  
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Figure 17. Population abundance estimates of adult striped bass (age-3 to age-6). Data from Loboschefsky 
et al. (2012) 1969-2004; 2005-2010 (gray bars) estimated using the same methods as Loboschefsky et al. 
2012. Catch per unit effort (dashed line) from California Department of Fish and Game, 
http://nrm.dfg.ca.gov/documents/ContextDocs.aspx?cat=R3-StripedBassStudy. 

Figure 18. Population abundance estimates of sub-adult striped bass (age-1 and age-2). From Loboschefsky 
et al. (2012) Figure 3. 
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Contaminants may also explain some of the decline in striped bass abundance. Ostrach et 
al. (2008) examined maternal transfer of contaminants in striped bass and reported: “The 
results from this study clearly demonstrate that xenobiotics are adversely affecting early-life-
stage striped bass in the San Francisco Estuary and need to be considered as one of multiple 
stressors affecting the continuing population decline.” Ostrach et al. (2008) further 
concluded: “Our results indicate that pesticides not in use for decades, such as DDT and its 
degradation products, are still persistent in the estuary and are being made bioavailable by 
recycling through the food chain to apex predators. Furthermore, our results show that these 
contaminants are being transferred to their progeny in biologically relevant levels.” 

Further analysis found results consistent with the earlier studies (Ostrach et al. 2009). In 
addition, Sommer (2008) reported that the sex ratio of young of the year striped bass in the 
Delta is heavily skewed toward male (90:10 male:female). While the cause of this skewed 
sex ratio is unknown at this time, exposure to endocrine disrupting chemicals cannot be 
ruled out. 
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9.0 California Bay Shrimp 
 

9.1 Introduction and Summary 

A relationship between the location of the X2 isohaline in the estuary and California bay 
shrimp abundance has continued without change after invasion of the Amur River clam in 
1986 (Kimmerer et al. 2009). No known mechanism of effect has been identified for how 
California bay shrimp respond to estuarine flows, but it is hypothesized to be increased 
passive upstream transport of juvenile shrimp by strong bottom currents due to 
gravitational circulation (Siegfried 1989; Moyle 2002). 

Glibert et al. (2011) found that bay shrimp abundance, as measured by the FMWT, was 
related to nutrients as well as to the location of X2, leading to uncertainty as to whether 
salinity (a proxy for through-Delta flow) or nutrients are the controlling variable. 

9.2 California Bay Shrimp Biology 

California bay shrimp, Crangon franciscorum, occurs in coastal bays along the Pacific Coast 
of North America from southeastern Alaska to at least San Diego, CA (Wang 1986). Two 
other closely related shrimp also exist in the Bay-Delta, the black shrimp Crangon 
nigricauda and the blue-spotted shrimp Crangon nigromaculata. Both of these prefer 
higher salinity water and are not associated with the eastern reach of the estuary and the 
Delta. Adult California bay shrimp feed on bay bottoms on crustaceans, polychaetes, 
mollusks, foraminiferans, and plant material. Amphipods are the most frequently ingested 
(Wang 1986; Siegfried 1989). Crangon shrimp live for approximately two years. They are 
an important food resource of the principal sport and commercial fisheries of Pacific Coast 
estuaries (Wang 1986). A bait fishery accounts for a small annual harvest. 

Bay shrimp spawn in bay waters and may spawn multiple times (Wang 1986). The larvae 
are initially found in near-surface waters of the bay, while later stage larvae are associated 
with the bottom of the water column. This places them in favorable position for dispersal 
up-estuary by gravitational circulation. Their abundance commonly peaks in spring and 
summer in low-salinity waters (Wang 1986). As the juveniles mature, they move to higher 
salinity waters. By fall the late-juveniles move back out into bay waters, apparently related 
to reproduction. Annual abundance of bay shrimp has been linked to the volume of through 
flows to San Francisco Bay (Wang 1986; Kimmerer et al. 2009). 

The distribution of the opossum shrimp is associated with the distribution of bay shrimp in 
the estuary; its density is greater in locations where mysids are abundant (Siegfried 1980). 
The abundances of early and mid-stage bay shrimp larvae in the estuary – the only stages 
using the upper estuary – are negatively correlated with estuary through flow (Kimmerer 
et al. 2009). In years of high freshwater outflow, a larger proportion of the reproductive 
population moves from bays to the near-shore coastal area, resulting in more larvae 
hatched outside the bays (Siegfried 1986), but with no apparent reduction in overall 
population size(s) as a result of diminished flows. 

 



Bay-Delta Fisheries Resources: Pelagic Organisms 

 

62  Other Pelagic Organisms September 14, 2012 

 

9.3 Environmental Factors Affecting California Bay Shrimp 

Organochlorine pesticide toxicity to bay shrimp has been reported (Wang 1986 and 
references therein). Its lethal threshold was estimated to be 100 ppb, while sub-lethal 
effects include increased physical activity, and decreased feeding and molting rates (Wang 
1986). 

The relationship between bay shrimp and the opossum shrimp (N. mercedis) suggests a 
more important effect. The effect of the invasive Amur River clam on N. mercedis 
abundance is well documented in the literature; Glibert et al. (2011) found that nutrient 
forms and ratios predicted N. mercedis abundances better than the location of X2 in the 
estaury (Figure 19). Flows do not alter the nutrient ratios. Glibert (2010) points out that 
the current strategy of salinity management will likely show little beneficial effect on 
phytoplankton, zooplankton, or fish. Rather, regulation of effluent nitrogen discharge 
through nitrification and denitrification offers an alternative management strategy with a 
history of success in other estuaries (see PWA submittal Ecosystem Changes to the Bay-
Delta Estuary: A Technical Assessment of Available Scientific Information, pp. 2-28 to 2-39). 
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Figure 19. Change in abundance of California bay 
shrimp over time in relation to (A) spring X2 
location, (B) ammonium, (C) nitrogen:phosphorus 
ratio. Abundance data is log transformed. 1975-1986 
(circles); 1987-1999 (diamonds); post-1999 
(squares). (A) from Kimmerer et al. (2009) Figure 3; 
(B) and (C) from Glibert et al. (2011) Figure 16. 
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