

Professional Background

- Ph.D., Biomathematics, North Carolina State University
- Associate Professor, Department of Fisheries Science, Virginia Institute of Marine Science (VIMS)
- VIMS' mission: research, education, advisory service - School of Marine Science, College of William \& Mary - Virginia state agency - Dep't of Fisheries Science - Implement fish monitoring
- Provide scientific support to regulatory agencies
- VIMS uses surveys as platforms for state and regional
fish research

Research, Education

Products for management

Chesapeake Bay

- ChesMMAP - mainstem Chesapeake Bay

- NEAMAP - coastal Atlantic, NC to New England

Methods to Improve Understanding of Fish Populations

- Apply standard catch-per-trawl-tow analysis to DFG raw fall mid-water trawl (FMWT) data
- Existing FMWT abundance index is based on (average fish caught) x (water volume), so index values are difficult to interpret

Delta smelt

- No documented understanding of how the number of fish caught per individual trawl tow relates to different environmental variables
- None of the variables considered, including spring flows, explain much of the overall variation in trawl data for pelagic fishes
- Year is a 'better' predictor of pelagic abundance than spring flow - Year is a composite of environmental conditions in a given year
- Different fish species have varying relationships with different flow variables - Wide range of trawl catches at different levels of flow
- Delta smelt abundance has an inverse relationship with the "best" fitting spring flow variable
- Turbidity has a stronger relationship with pelagic fish abundance than flow does - Turbidity coefficient is twice as large as 'best' fitting flow variable for longfin ${ }^{3}$

Methods to Improve Understanding of Fish Populations (cont)

- Further catch-per-tow analyses could:
- Identify broad temporal/spatial shifts in habitat use over 19672010 FMWT period

Longfin smelt

- Analyze turbidity-abundance relationship with more robust turbidity data: literature indicates significant reductions in Delta turbidity occurred concurrent with pelagic fish population declines
- Reallocate existing resources to maximize information gathered by FMWT
- FWMT catches very few of target species per trawl: 1967-2010 average $=0.17$ delta smelt per tow
- Similar trawls in Chesapeake Bay catch 10-20 of target species per tow
- It may be possible to reduce number of tows without increasing error of indices and reallocate resources to pilot trawl projects:
- Sample more locations and more depths to identify changes in habitat use
- Investigate diel movements
- Investigate trawl net performance

Scope of Analysis

- Address workshop notice's questions about uncertainty in 2010 Delta flow criteria report analysis and new information
- Articles suggest a positive relationship between flow and abundance:
- Jassby et al. 1995; Kimmerer 2002: X2 \uparrow leads to a \downarrow in species relative abundance
- Sommer et al. 2007: \uparrow flow leads to \uparrow species

Threadfin shad relative abundance

- Prior analyses based on abundance indices or coarse metrics of catch-per-trawl based on DFG FMWT survey data
- Issues analyzed:
- Uncertainties in FMWT survey methodology and DFG abundance indices
- Analysis of FWMT survey data to provide standardized abundance estimates and error margins (estimates of precision)
- Application of standard statistical methods to analyze relationships between raw of catch-per-trawl data and spring flow variables
- Develop recommendations for further analysis with existing resources

Initial Impressions \& Analytical Direction

- Uncertainty in FMWT abundance indices
- FMWT abundance index difficult to interpret because it is based on (fish caught) x (water volume) - What does change from 11864 to 7408 (fish caught) x (water volume) mean?
- Index has no estimate of error range
- Apply statistical models to raw data to address FMWT issues
- Reliance on USFWS work, paper by USFWS biologist (Newman 2008) similarly identified constraints with FMWT
- Newman (2008) suggested statistical models with additional covariates for better understanding of FMWT data

```
SAN PRANCISCO 
Pag
Title:
Sample design-based methodology for estlmating delta smelt abundance
Journal Issue:
```



```
Author:
Newman, Ken B, U.S. Fish and wildife Service
Publlcation Date:
2008
Publlcation Info:
San Francisco Estuary and Watershed Sclence, John Mulr Institute of the Environment, UC Davis
Permallnk:
nttp//lescholarshlp.org/ucitem/99p428z6
Keywords:
gear selectlvity. Horvitz-Thompson, Hypomesus transpacincus, ratlo estimators, straithed random
samplng
Abstract:
A sample design-based procedure for estlmating pre-adult and adult delta smelt abundance
Ii described. Using data from mlowater trawl suvers taken during the months of september,
selectitity of the geair from a covered codend experment, stratined random sample ratio estimates
ol
(1) the volume sampled is used In a manner that leads to directly Interpretable numbers and
varation in the range of 1001% occurred. The point estrmates are highly correlated with the monthly
*)
tal
stages, such as larval surveys; (3) embedding a life-history model Into the population estimation
```


Initial Impressions

- Uncertainties in FMWT data
- Low catch rates of target species. 19672010 averages:
- Delta smelt: 0.17 fish-per-tow
- Splittail: 0.02 fish-per-tow
- Starry flounder: 0.04 fish-per-tow
- Compare: VIMS Juvenile Finfish Trawl Survey - since 1950s, 20 and 10 fish-per-tow of targeted species
- FMWT does not account for habitat changes
- fixed sampling stations that would not identify changes in habitat use
- Submissions to SWRCB show changes in habitat use
- Independent science panel, p. 8

Newman 2008
Independent Science Panel:
"[L]ongfin smelt distribution has shifted to downstream bays and into deeper waters"
"While the center of distribution of delta smelt is still in the low-salinity zone, the species has shown evidence of increasing use of Cache Slough Complex in the north Delta."
"Threadfin shad center of distribution used to be in the south Delta . . ., but the species has recently been concentrated in the Sacramento Deep Water Ship Channel"

Statistical Analysis - Initial Steps

- Applied generalized linear model (GLM) to FMWT data
- GLMs commonly are used to derive abundance indices (mean catch-per-tow) and to examine significance of covariates like flow and turbidity
- Due to low encounter-per-tow, I analyzed raw FMWT data in two categories:
- Likelihood of catching at least one fish of a species (presence/absence binomial)
- No. of fish caught on successful tows (relative abundance - lognormal)
- The following covariates all were statistically significant
- Year: discernible trends in catch-pertow over years
- Month: differing catch-per-tow results in different months
- Area: differing catch-per-tow results due to location of tow within Delta
- Secchi: \uparrow catch-per-tow with \uparrow turbidity
- Coefficients of variation (CV) are acceptable to support analyses

Statistical Analysis - ‘Best’ Fitting Flow Covariates

- Substituted 16 different 'spring' flow variables for Year in statistical analysis
- Different 'spring' flow covariates were the 'best' fit for different species and for presence/ absence and abundance

| Species | Presence/Absence
 (Binomial Δ AIC=0) | Abundance
 (Lognormal Δ AIC=0) |
| :---: | :---: | :---: | :---: |
| Delta smelt | Unimpaired Inflow,
 Jan-Jun | Historical Inflow, Mar-May,
 1yr Lag |
| Longfin smelt | Unimpaired Inflow,
 Jan-Jun | Historical Outflow,
 Jan-Jun |
| Sacramento splittail | Unimpaired Inflow, | |
| Jan-Jun | Historical Outflow, | |

- Unimpaired flow covariates were most common 'best' fitting covariate
- Unimpaired flow is calculated, not actual, flow
- 'Best' fit does not guarantee any particular level of biological response

Statistical Analysis - Flows

- CPUE analysis shows widely variable flow-abundance relationships, with turbidity relating more strongly to relative abundance
- Flow relationships based only the small portion of tows that actually caught the target species
- 'Best' fitting spring flow variables show widely varying relationships with trawl catches
- 'Best' fitting flow variable was different for different species

Statistical Analysis - Flows (cont)

- No flow variable explains much of the variation in pelagic fish catch data
- Statistically significant relationships exist, i.e., coefficients are different than 0 . Statistical significance does not always equal biological significance
- The high degree of variability at each flow level means that flow levels, by themselves, do not have much biological significance
- Specifically, flow variables' very small coefficients indicate that spring flow does not strongly relate to fish catch

Statistical Analysis - Flows (cont)

- Different species have different relationships with 'best' fit spring flow variable
- Delta smelt's abundance has an inverse relationship with 'best' fit flow variable
- Longfin smelt's abundance relationship with turbidity is double its relationship with the 'best' fit flow variable
- Turbidity consistently has a stronger relationship (i.e., higher β) with abundance than flow does
- Lower Secchi depth means higher turbidity
- Turbidity has a positive relationship with abundance

Statistical Analysis - Turbidity

- Turbidity has stronger relationship with abundance than flow does
- Turbidity-abundance relationship is at least twice as strong as flow-abundance relationship
- Delta turbidity has declined significantly as pelagic fish populations have declined
- 40% turbidity decline 1975-2008
- Step-decline in Delta turbidity in late 1990s
- Turbidity may affect pelagic fish abundance and surveys in many ways - higher turbidity means:
- Decreased predation
- Higher primary productivity
- Decreased gear avoidance

Cloern et al. 2011

Fig. 4 Suspended-sediment concentration, mid-depth, Point San Pablo. The vertical dashed line indicates when the step decrease occurred

Recommendations Existing Data

- SWRCB could further analyze existing data to identify trends and most important habitat and implementation measures
- Turbidity - SWRCB should investigate with more robust turbidity data
- Secchi is a coarse measure of turbidity
- More robust data is available Schoellhamer (2011) uses total suspended solids data
- Habitat use - trends in FMWT catch data
- Analyzing trends in Region factor in FMWT data could identify changing habitat use and subregions for specific attention
- Changes in distribution noted by science panel

Fig. 4 Suspended-sediment concentration, mid-depth, Point San Pablo. The vertical dashed line indicates when the step decrease occurred

Schoellhamer 2011

Independent Science Panel (p 8):
"[L]ongfin smelt distribution has shifted to downstream bays and into deeper waters"
"While the center of distribution of delta smelt is still in the low-salinity zone, the species has shown evidence of increasing use of Cache Slough Complex in the north Delta."
"Threadfin shad center of distribution used to be in the south Delta . . ., but the species has recently been concentrated in the Sacramento Deep Water Ship Channel"

Recommendations Existing Resources

- DFG may be able to reduce FMWT tows without increasing sampling error and reallocate resources to pilot and additional studies
- Pilot studies
- Additional locations/depths/habitats to assess any changes in habitat use
- Trawl net performance in variable conditions (flume tank tests)
- Changes to FWMT trawls
- Expand trawl hours to assess diel movements and differential tow success
- For example, add plankton sampling

Centre for Sustainable Aquatic Resources, Memorial University,

Conclusions

- Uncertainties in FMWT Abundance Index

- FMWT does not capture changes in habitat use - independent science panel shows changes in habitat use by several species
- FMWT abundance index difficult to understand. What does change from 11864 to 7408 (fish caught) x (water sampled) mean?
- No estimate of error range in abundance index
- FMWT catches very few of target species per tow
- Statistical CPUE analysis based on FMWT raw data indicates widely variable flowabundance relationships and that turbidity has better relationship with abundance than flow does
- No flow variable explains much of the variation in pelagic fish abundance
- 'Best' fit flow variable is different for different species
- Small and variable relationships between catch and flow covariates - A small, but inverse, relationship exists between delta smelt and 'best' fit spring flow variable
- Turbidity consistently has a stronger relationship to abundance than flow does

