SWRCB Workshop

Considering the Southern Delta Water Quality Objectives for Salinity in the Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary

January 16, 2007

Presentation by South Delta Water Agency

Current Southern Delta Water Quality Objectives

0.7 mmhos/cm EC April – August

1.0 mmhos/cm EC September - March

"Indigenous" Salts

Indigenous salts derive primarily from the weathering of rocks and soils.

Sacramento-San Joaquin Delta

Imported Salts

Imported Salts

Pre-Project Conditions

TABLE VI-27. EXTREME VALUES OF HIGH TDS AND LOW FLOW AT VERNALIS BY YEAR CLASSIFICATION

Ma monthl	uximum y <u>meen TDS</u>	Minimum monthly mean flow AF > 1000		
Pre*	Fost**	Pre	Post	
490	765	35.8	17.3	
407	530	67.1	44.0	
398	521	77.5	55.0	
399	528	76.2	46.8	
358	364	116.4	96.6	
42.4	561	68.1	48.9	
	Ma <u>monthl</u> r Pre* 490 407 398 399 358 424	Maximum monthly mean TDS mg/L Pre* Post** 490 765 407 530 398 521 399 528 358 364 424 561	Maximum Minimonthly mern TDS monthly	

** 1952-1966, data from table VI~15.

Effects of the CVP Upon the Southern Delta Water Supply Sacramento-San Joaquin River Delta June 1980

Pre-Project Conditions

Effects of the CVP Upon the Southern Delta Water Supply Sacramento-San Joaquin River Delta June 1980

Table V-21

SUMMARY OF REDUCTIONS IN RUNOFF OF SAN JOAQUIN RIVER AT VERNALIS FROM PRE-CVP TO POST-CVP

	EFFECT OF ALL F Development on F	POST-CVP UPSTREAM RUNOFF AT VERNALIS	EFFECT OF CVP ON RUNOFF AT VERNALIS					
YEAR TYPE & PERIOD	Reduction in Runoff KAF ¹	Post 1947 Reduction as Percent of Pre-1944 Actual Runoff	Reduction in Runoff KAF ¹	Reduction at Vernalis as Percent of Pre-1944 Flow	Reduction at Vernalis as Percent of Post-1947 Flow			
DRY				-				
April-Sept Full Year	206- 417 294- 519	49-67² 25-44	6- 7 93- 138	1.4- 1.6 8 - 12	3.0-3.6 10 - 14			
BELOW NORMAL								
April-Sept Full Year	1064-1177 1219	60-68 ² 44 ²	386- 428 543	$22 - 24^{2} - 20^{2}$	55 - 61 35			
ABOVE NORMAL								
April-Sept Full Year	1406-1732 1400-1721	47-57 28-34	440- 704 768-1076	14 - 23 15 - 21	40 - 64 25 - 36			
WET								
April-Sept Full Year	1002-1760 1168-2916	19-32 13-32	554-965 771-2014	10 - 18 9 - 22	15 - 26 12 - 31			
AVERAGE OF ALL YEARS ³								
April-Sept Full Year	920-1272 1020-1594	44-56 28-39	347- 526 544- 943	12 - 17 13 - 19	28 - 39 21 - 29			

¹ Range of estimates by all methods of analysis. See Tables V-2 through V-17
² Pre-CVP "actual" is assumed to be post-1947 actual plus pre-1944 to post-1947 loss
³ Assumes that each year class occupies one-quarter of period

Agricultural Code Section 411

(a) The Department of Food and Agriculture shall supply the Department of Water Resources with a forecast that estimates the amount of production of food, fiber, livestock, and other farm products.

. . .

(c) The department shall include an additional table in the forecast that estimates the agricultural water needs based upon food security considerations that include, at a minimum, the following:

(2) Production of farm products sufficient to feed the state's population, as well as continue to provide at least 25 percent of the nation's table food.

. . .

(3) Production necessary to meet the growth in export markets.

Effects on Crop Yields

• Decreased crop yields

- Necessary Monitoring
- Unless otherwise indicated, water quality objectives cited for a general area, such as for the southern Delta, are applicable for all locations in that general area and compliance locations will be used to determine compliance with the cited objectives. (2006 Water Quality Control Plan.)

Salinities Above the Standards Adversely Affect Crop Yield

- Prior studies
- Prior evidence of crop damage on Salmon Farm
- Prior evidence of calculated economic impacts to San Joaquin County

[Most recently submitted in 2006 CDO Hearing]

Challenges to Existing Standards

- Ignore variations to plant sensitivity during different growth stages
- In addition to the generalized salt tolerance of crops . . . some crops may be more sensitive during emergence than during later stages of growth. . . . Some crops are salt sensitive at the early seedling stage. Data from literature indicate that barley, corn, rice, and wheat are most sensitive during emergence and the four leaf stage. (Hoffman, et al., Water Quality Considerations for the South Delta Water Agency)

Challenges to Existing Standards

• Incorrectly assume all rainfall provides leaching benefits

Challenges to Existing Standards

- Ignore limited soil permeabilities in the South Delta
- Ignore leaching waters' different rates of flow through the soil profile

Inadequacies of South Delta Improvement Program (SDIP)

- Periodic lack of control of salinity and DO
- Changes/additions to enable SDIP to meet the standards

The South Delta Improvement Program (SDIP)

• Proposed SDIP improvements and operations do not always provide sufficient flows to maintain water quality at the current standards.

Nearly Dry Channel December 4, 2006 Middle River at Undine Bridge Asparagus farmers unable to divert

Export Pumping Effects on South Delta Water Levels

With the same CVP export rate and the same riverflow rate at Vernalis, but with a 4,800 ft³/s average daily SWP export rate (drawn off the high tide at about 12,000 ft³/s), the drawdown at the CVP intake channel is increased to 1.83 feet at HHW and 0.32 foot at LLW; at Old River and Tom Paine Slough it is 1.78 feet at HHW and 0.34 foot at LLW; and at Mossdale it is 1.33 feet at HHW and 0.37 foot at LLW. The intermittent pumping impact at Clifton Court was calculated at 0.127 foot per 1,000 ft³/s at HHW, which compares favorably with the rate calculated using the June 21-22, 1972 data (0.122 ft/1,000 ft³/s).

Effects of the CVP Upon the Southern Delta Water Supply Sacramento-San Joaquin River Delta June 1980, page 170-171.

Export Pumping Effects on South Delta Water Levels

TABLE VII-6

SUMMARY OF WATER LEVEL CHANGES IN THE SOUTHERN DELTA DUE TO EXPORT PUMPING BY THE CVP AND ${\rm SWP}\,\underline{1}/$

		RUN 50-29A $Q_{(DMC)} = 4323$		RUN SD-298 Q_(DHC) - 4323 Q_(SWP) = 1600		RUN SD-30 Q (DHC) - 4323 Q (SUP) - 2800 O (SUP) - 7000			11UN SD-32 Q_(DHC) = 4323 Q_(SHT) = 4800 Q_(SHT) = 4800 Q_(SHT) = 12,000				
Node	Location	เกณ	HTL	LLW	พพัง	op_HIT	r) = 2000 LLW	HILM	HTL	LLW	HICH P	нπ.	LLW
1	Bacon [01. (Input)	٥	o	D	o	0	0	D	o	٥	0	O	a
20	Clifton Ct.	-0.36	-0,35	-0,34	-0.89	-0.47	-0.36	-1.08	-0.58	-0.34	-].74	-0.77	-0.26
22	Old R. # DHC	-0.52	-0.49	-0.40	-1.01	-0.59	-0.40	-1.17	-0.70	-0.39	-1.83	-0,89	-0.32
26	WSID	-0,51	-0.47	-0.47	-1.01	-0.58	-0.49	-1.17	-0.68	-0.46	-1.84	-0.87	-0.38
32	Old R. @ Tracy Rd.	-0.43	-0.41	-0.39	-0,97	-0.54	-0.40	-1.12	-0.64	-0.37	-1,81	-0.83	-0.29
115	Grantline 6 Tracy Rd.	-0.44	-0.40	-0.44	-0.93	-0.60	-0.46	-1.09	-0.61	-0.43	-1.76	-0.80	-0.36
34	Tom Paine SL.	-0.41	-0.42	-0.37	-0.92	-0.53	-0,40	-1.11	-0.62	-0.39	-1.78	-0.61	-0.34
25	Selmon 51.	-0.40	-0.39	-0.33	-0.90	-0.50	-0.37	-1.06	-0.39	-0,36	-1.73	-0.79	-0.31
39	old R. @ Middle R.	-0.35	-0.33	-0.31	-0.81	-0.46	-0.35	-1,00	~0.56	-0.34	-1.63	-0.74	-0, 31
44	Old R. 🖨 San Josquin	-0.31	-0.27	-0,18	-0.65	-0.38	-0.24	-0.89	-0.46	-0.26	-1.32	-0.61	-0,29
139	San Joaquin 🖲 Hossdale	-0.34	-0.26	-0.13	-0.66	-0.38	-0.22	-0.87	-0.46	-0,27	-1.33	-0.65	-0.37

1/ Based on mathematical model analysis using a version of the WRE Model

- $\underline{2}/Q_{e}$ is the average daily diversion
- $3/Q_{en}$ is the actual diversion during HIW
- Note: Vernalis flow rate 550 rfs.

Effects of the CVP Upon the Southern Delta Water Supply Sacramento-San Joaquin River Delta June 1980.

Draft South Delta Improvements Program EIS/EIR Volume Ia

Possible SDIP Scenario

Net Flows – SJR 1000 cfs SWP Priority 3 Ops

July 1985

Null Zones With Temporary Barriers

How to Meet the Standards

- Supplement tidal flows with low lift fish friendly pumps
- Supplement San Joaquin River flows with (better quality) recirculation water

Supplement Tidal Flows

