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Abstract

Products of multinomial models have been the standard approach to analyzing animal release-

recovery data. Two alternatives, a pseudo-likelihood model and a Bayesian nonlinear hierarchical

model, are developed. Both approaches can to some degree account for heterogeneity in survival

and capture probabilities over and above that accounted for by covariates. The pseudo-likelihood

approach allows for recovery period specific overdispersion. The hierarchical approach treats sur-

vival and capture rates as a sum of fixed and random effects. The standard and alternative ap-

proaches were applied to a set of paired release-recovery salmon data. Marked juvenile chinook

salmon (Oncorhynchus tshawytscha) were released, with some recovered in freshwater as juveniles

and others in marine waters as adults. Interest centered on modelling freshwater survival rates

as a function of biological and hydrological covariates. Under the product multinomial formula-

tion, most covariates were statistically significant. In contrast, under the pseudo-likelihood and

hierarchical formulations, the standard errors for the coefficients were considerably larger, with

pseudo-likelihood standard errors five to eight times larger, and fewer coefficients were statistically

significant. Covariates, significant under all formulations, with important management implica-

tions included water temperature, water flow, and amount of water exported for human use. The

hierarchical model was considerably more stable with regard to estimated coefficients of training

subsets used in a cross-validation.
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pseudo-likelihood.

1Ken B. Newman is Associate Professor, Division of Statistics, University of Idaho, 83844-1104. Fax: (208)

885-7959. Email: newman@uidaho.edu. This work was partially funded by Contract Agreement No. B-81353

with the California Department of Water Resources and I thank Randy Brown and Sheila Greene for their sup-

port. Patricia Brandes, USFWS, provided assistance putting together the data set and matching upstream and

downstream releases. John Rice made several useful suggestions, as did Carmen Fernandez, Len Thomas, two

referees and the editor. David Fournier, Otter Research, helped with coding for AD Model Builder. The data

are available at http://www.uidaho.edu/∼newman/Data/CDWR/paired.dat. AD Model Builder input program files

are available at http://www.uidaho.edu/∼newman/Data/CDWR/ADMB and the MCMC programs, written in C, at

http://www.uidaho.edu/∼newman/Data/CDWR/MCMC.

1



1 Introduction

Release-recovery data are generated by marking animals, releasing them, and later recovering them.

In contrast to capture-recapture data, the recovered animals are not re-released; in many cases the

recovered animals are dead. Band-recovery data where banded birds are later recovered by hunters

are an example of release-recovery data, as are marked and tagged salmon recovered by fisheries.

The classic approaches to modelling release-recovery and capture-recapture data date back to the

1950s and early 1960s (Darroch, 1959; Cormack, 1964; Jolly, 1965; Seber, 1965) and are based upon

products of multinomial models. In the case of release-recovery data with a sequence of possible

recovery points, the marginal distribution for recoveries at a given time point is binomial with

the recovery probability being the product of a sequence of conditional survival and conditional

capture probabilities. For example, let R be the number of animals released at the beginning of

the study, Si be the probability of surviving to time point ti (given it was alive at ti−1), and pi be

the probability that an animal alive at ti is captured then. The number of recoveries at time point

t3, say, is Binomial(R,S1(1− p1)S2(1− p2)S3p3).

Extensions to the multinomial models have included the modelling of survival and capture

probabilities by covariates and the inclusion of an overdispersion parameter to account for extra-

multinomial variance (Lebreton, et al., 1992). Departures from the multinomial distributions in-

clude Poisson distributions, Poisson generalized linear models, and overdispersed Poisson or quasi-

likelihood models (Cormack, 1993).

Presented in this paper are two further extensions to the classic multinomial formulations. One,

labelled the pseudo-likelihood approach, allows for different overdispersion parameters at different

recovery points. An earlier analysis of a set of unpaired release-recovery salmon data (Newman and

Rice, 2002) used extended quasi-likelihood (Nelder and Pregibon, 1987) to fit two overdispersion

parameters at two recovery points. This paper is a slight variation over this earlier work in that

the data are a set of paired release-recovery data and pseudo-likelihood (Carroll and Rupert, 1988)

is used for estimating two overdispersion parameters.

The second extension to the classic formulation is a nonlinear hierarchical model where survival

and recovery probabilities for a given release of marked animals are a function of fixed and random

effects. Heterogeneity in survival and recovery probabilities that cannot be explained by covariates

is then partially accounted for by the random effects.

This work was motivated by an application to release-recovery chinook salmon data and the

next section describes the motivation of the application, the data, and reasons for overdispersion.

The following section describes the three modelling approaches and estimation procedures. The

results are then compared and the paper ends with a discussion that includes a sensitivity anal-

ysis, more complex hierarchical models, a comparison with the unpaired release-recovery analysis
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(Newman and Rice, 2002), and brief discussion on choosing between the three alternative modelling

approaches.

2 Application background

The Sacramento River is located in northern and central California and provides water for human

consumption and agricultural use to over 20 million people. The river is also home to chinook

salmon (Oncorhynchus tshawytscha), a species of salmon that had returns of a million or more

in the early 1900s (Healey, 1991). In the last 30 years there has been a drastic reduction in

the number of naturally spawning salmon due to loss of habitat, environmental degradation, and

overfishing. The loss of natural fish has been somewhat mitigated by hatchery produced salmon,

but considerable concern remains over the viability of naturally spawning stocks.

To identify which factors influence the survival of juvenile chinook salmon as they outmigrate

from freshwater to marine waters, the U.S. Fish and Wildlife Service (USFWS) has been conduct-

ing release-recovery studies for over twenty years. Hatchery reared juvenile chinook salmon are

externally marked by removing the adipose fin and a micro-tag (a coded-wire-tag) is injected into

the snout. The tags are release or batch specific, not individual fish specific, and the fish must

be sacrificed to read the tag and identify the release the fish came from. The fish are released at

multiple locations in the Sacramento river, particularly in the lower portions of the river, during

the months of April and May. A midwater trawl located downstream of the release sites, in the

tidal zone just east of San Francisco Bay, recovers the fish within two to three weeks after release.

For some of the study years additional releases of marked and tagged fish were made just

downstream of the trawl and these releases are viewed as being paired with some of the upstream

releases. Fish from both the upstream and downstream release locations are later caught as two to

five year old fish in the Pacific Ocean by commercial and recreational fisheries. At landing ports

throughout the fishing season, samples are taken of the catches, additional recoveries of the marked

and tagged fish are made, and estimates of the total number of marine fisheries’ recoveries are

made.

As mentioned previously, the river and marine recoveries from the upstream releases alone were

analyzed by Newman and Rice (2002), here labelled the unpaired releases analysis. Let S be the

probability of surviving from point of release to the trawl and p be the conditional probability

of capture given survival. Sp was modeled as a function of several biological and hydrological

covariates. Using the upstream releases alone, S and p are not separately estimable. However, by

assuming that the capture rate p was a product of known trawl fishing effort f and some unknown,

but constant catchability coefficient, q, the ratio S1/S2 for any two releases could be estimated.

Letting Ŝipi be the model-based estimate of Sp and fi be the corresponding trawl fishing effort for
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release group i, i=1,2,

Ŝ1

S2
=

Ŝ1p1/f1

Ŝ2p2/f2

. (2.1)

In contrast with Newman and Rice (2002), this paper presents an analysis of recoveries from

the paired upstream and downstream releases. By assuming identical marine survival and capture

rates for paired upstream and downstream releases, S and p are separately estimable. The release

and recovery data along with covariates used to model S are described next, followed by a section

listing reasons for overdispersion with these data.

2.1 Data

With assistance from USFWS personnel, 61 upstream releases were paired with 19 downstream

releases made between 1979 and 1995. The term “pairings” is not strictly correct in that several

upstream releases were sometimes matched with a single common downstream release. The term

release set will sometimes be used alternately with release pair. Most of the upstream releases

were amongst the larger set of 101 upstream releases analyzed by Newman and Rice (2002). The

upstream release groups were released in one of three locations over the period of study, near the

city of Sacramento (approximately 50 miles upstream of the trawl; n=22), near Courtland (38

miles upstream; n=18) , and near Ryde (30 miles upstream; n=21). The downstream groups were

released at one of two locations below the trawl, Port Chicago and Benicia.

Table 1 summarizes the release and recovery information. The number of fish released from an

upstream location is denoted Ru, while the number released downstream is Rd. The number of

trawl recoveries from an upstream release is yut, the number of ocean recoveries from an upstream

release is yuo, and the number of ocean recoveries from a downstream release is ydo. As mentioned

earlier the number of ocean recoveries is estimated by what is approximately a temporally-spatially

stratified sample of marine catch. These estimates, denoted ŷuo and ŷdo, can be approximately

written as

ŷuo ≈
∑
a

∑
t

∑
p

eatp yuatp, ŷdo ≈
∑
a

∑
t

∑
p

eatp ydatp

where yuatp and ydatp are the number of recoveries, from an upstream release and a downstream

release, of marked and tagged fish in stratum atp’s sample; a denotes age which ranges from 2 to

5 years, t denotes time period within a fishing season, and p denotes landing area (usually a port).

eatp is the inverse of the sampling fraction for a given stratum, also known as the expansion factor,

and is on average 4 to 5, i.e., 20 to 25% of the landed catches are sampled. The trawl recovery

rates, rut, and estimated ocean recovery rates, r̂uo and r̂do, are defined as the ratio of recoveries, or

4



estimated recoveries, to number released; i.e.,

rut =
yut
Ru

, r̂uo =
ŷuo
Ru

, r̂do =
ŷdo
Rd

.

For upstream releases the median r̂uo was an order of magnitude greater than the median rut. For

downstream releases the median r̂do was about twice r̂uo. For a paired release, assuming common

ocean survival, harvest, and sampling rates, ruo should be less than rdo due to in-river mortality

and removals by the trawl.

The covariates used to model S are summarized in Table 2. The covariate values for each of

the three upstream release sites, individually, were quite similar in terms of means and standard

deviations. The gate variable is an indicator for the position of a diversion gate located just

downstream of Courtland. When the gate is open (indicator=1), fish moving downstream are more

likely to get diverted into a sprawling delta where large water export pumps are located. Indicator

variables for release at Sacramento or Courtland (labelled Sac and Court) were included in the

modelling of S. This allowed for a release site effect that was to some degree a function of distance

upstream. Consistent with Newman and Rice (2002), gate position and export level were assumed

to only affect releases made above the diversion gate (Sacramento and Courtland alone). Interaction

terms, crossing the Sacramento and Courtland indicator variables with exports and gate position,

were used to reflect that assumption; i.e., the gate and export interaction variable values were set

at 0 for Ryde releases.

Correlations between covariates were slight (less than 0.5) with two exceptions. Flow and

salinity are inversely related (r = -0.74), but not in a strictly linear fashion; as outflow increases,

the influx of seawater lessens. Hatchery and release temperatures are positively correlated (r =

0.67), because the water source for the hatchery is river water.

The covariates are a subset of those used by Newman and Rice (2002) to model Sp, with the

exception that here the export measure is total volume exported, while Newman and Rice used the

ratio of export volume to flow volume; subsequent differences are discussed later.

2.2 Reasons for overdispersion

The simplest way to model recoveries is to assume that all the fish in a given release are independent

and have the same probabilities of recovery (by the trawl or by the ocean fishery). In other

words for a given upstream release, trawl and ocean recoveries are trinomial, and for a given

downstream release, ocean recoveries are binomial. Such an approach, labelled the trinomial-

/binomial product (TBP) model, is the basis for one of the approaches taken and is discussed in

the next section. The fact that ocean recoveries are estimated rather than observed make the TBP

formulation questionable, however, and make overdispersion likely. Letting π be the probability
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that a downstream release is later caught by the ocean fishery, the variation in ŷdo is greater than for

a Binomial(Rd, π) random variable due to estimation error. Theoretical arguments and empirical

evidence for overdispersion led to the two alternative modelling approaches.

There are several reasons for possible overdispersion (Collett, 1991). Important covariates,

either unknown or unmeasured, may have been left out of the model for the recovery probability. To

lessen the chance of this, a relatively conservative approach was taken to the modelling of S, p, and

π and is described later. Overdispersion is likely due to correlation between individuals, caused by

fish schooling or clustering, in particular while moving downstream. Additionally, heterogeneity in

survival probabilities is likely due to variation in individual fish size at least. Relatedly, group-level

covariate values, such as average fish length, are used in the modelling of survival, thus covariate

values have measurement error, which induces correlation between individuals and subsequent

overdispersion (Prentice, 1986). Heterogeneity in survival probabilities is also likely due to fish

from the same release taking different routes downstream and having different travel times to the

trawl. The trawl operates only during portions of the day and can only sweep a portion of the

width and depth of the river when it is operating. Variation in travel times and position in the

river then translates into heterogeneity in capture probabilities, too.

There was empirical evidence for overdispersion. Several upstream release groups were identified

as replicates, groups nearly identical with the exception of having different tag codes. Based on a

χ2 goodness of fit test assuming a multinomial model, the variation in river and (estimated) ocean

recoveries for some of the replicate sets, but not all, was greater than expected. For example,

assuming a trinomial model for the downstream and ocean recoveries from four replicate releases

from Courtland in 1985 yielded X2=25.8, 6 df, P-value=0.0002.

3 Methods

3.1 Tri-/binomial product (TBP) model for recoveries

The tri-/binomial product model is a particular case of a band-recovery or release-dead recovery

model (Brownie et al., 1985) based on products of multinomial distributions. Each upstream release

has one of three possible fates, recovery by the trawl, recovery in the ocean fisheries, and anything

else. The fate for any individual fish is assumed independent of the fate any other fish. For a

paired release, or release set, it is assumed that the ocean recovery probability, π, is the same for

all releases. For a given release pair, the joint distribution of (yut, yuo, ydo) is a product of trinomial

and binomial distributions:
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Pr(yut, yuo, ydo) =
(

Ru
yut yuo

)
(Sp)yut(S(1− p)π)yuo(1− Sp− S(1− p)π)Ru−yut−yuo

×
(
Rd
ydo

)
πydo(1− π)Rd−ydo (3.1)

To address the management questions about the effect of biological and hydrological variables on

survival probability, S was modelled as a function of the covariates (Table 2). Capture probabilities

were handled two different ways: (a) “release specific” p’s (no covariates) and (b) covariate based p’s.

Maximum likelihood estimates of the covariates for S, of p or its covariates, and π were calculated

for the TBP model with estimates of yuo and ydo substituted in Equation (3.1) for the actual, but

unknown values. The models for S and p were the same under the TBP, pseudo-likelihood, and

hierarchical formulations, and are described next.

3.2 Modelling S

The logit of S was modeled as a function of covariates (Lebreton, et al., 1992); i.e.,

S =
exp(x′β)

1 + exp(x′β)
(3.2)

where x is a column vector of covariates and

x′β = β0 + β1Sac+ β2Court+ β3Size+ β4Log F low +

β5Salinity + β6Release Temp+ β7Hatchery Temp+ β8Tide

β9(Sac|Court× Exports) + β10(Sac|Court×Gate) + β11Turbidity. (3.3)

Again, Sac and Court are indicators for releases from Sacramento and Courtland. The covariates

(Sac|Court×Exports) and Sac|Court×Gate are the exports and gate position indicator just for

releases from Sacramento or Courtland (the values are zero for releases from Ryde). To facilitate

comparisons between covariates in terms of the magnitudes of coefficients, and to lessen numerical

errors, the non-indicator variables were standardized.

3.3 Modelling p

The river capture probabilities, p’s, and the ocean recovery rates, π’s, can be modeled as functions

of covariates. There are several questions of interest one could answer by doing so; e.g., How related

is p to trawl effort?; Is p affected by flow or turbidity?. Only two models for p were examined (and

none for π) were examined, however, because the primary focus was on factors affecting survival.

Incorrect modelling of the p’s or the π’s results in biased estimates of survival. Conversely, the cost
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of not modelling the p’s or π’s is less precision in the estimates of the survival model coefficients;

using release set specific p’s and π’s adds 80 parameters.

One model for p used trawl effort as a covariate. The other model used an indicator for 1988

releases, the year in which sampling effort was approximately double that of other years:

p =
exp(γ0 + γ1I1988)

1 + exp(γ0 + γ1I1988)
(3.4)

The indicator variable was selected over the effort measure because the former yielded a larger

likelihood at the maximum likelihood value from the TBP model and it provided a slightly better

fit as measured by a χ2 goodness of fit statistic. Only results for Equation (3.4) are reported.

3.4 Pseudo-likelihood (PL) model for recoveries

The pseudo-likelihood approach of Carroll and Rupert (1988) was used to account for overdispersion

in both the trawl and estimated ocean recoveries. Different overdispersion parameters were used

for each recovery type. The expected number of recoveries were based on the TBP formulation.

E[yut] = RuSp

E[ŷuo] = RuS(1− p)π

E[ŷdo] = Rdπ

The variances were multiples of the TBP variances with three different dispersion parameters

used for each recovery category.

Var[yut] = φutRuSp(1− Sp)

Var[ŷuo] = φuoRuS(1− p)π(1− S(1− p)π)

Var[ŷdo] = φdoRdπ(1− π)

In the absence of replicates amongst the downstream releases, overdispersion for ydo cannot be

estimated and φdo was fixed at 1.0. Similarly, when release specific values p are used, φut is not

estimable and was fixed at 1.0. Even if replicates were available for upstream and downstream

releases and all the φ’s were estimable, the assumption of constant values for each release-recovery

combination is at best a coarse means of dealing with the overdispersion. For example, if the

survival and capture probabilities are viewed as random variables (as in the hierarchical formulation

discussed later), then the magnitude of the variance inflation is a function of the number of fish

released. The range of release numbers is considerable (Table 1), thus between release variation in

overdispersion could be large.
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The objective function to be maximized is

P = −0.5

[
nu∑
i=1

{
(yuti − µuti)2

Var[yuti]
+ log (2πVar[yuti])

}]

−0.5

[
nu∑
i=1

{
(ŷuoi − µuoi)2

Var[ŷuoi]
+ log (2πVar[ŷuoi])

}]

−0.5

[
nd∑
i=1

{
(ŷdoi − µdoi)2

Var[ŷdoi]
+ log (2πV ar[ŷdoi])

}]
where nu and nd are the number of upstream and downstream releases; nonsubcripted π is the

constant 3.14159.

This formulation ignores the correlation between yut and ŷuo. However, given the relatively

small magnitude of S, p, and π, the effect of the correlation was practically ignoreable. The median

estimated correlation between yut and ŷuo was -0.002.

3.5 Hierarchical model for recoveries

The pseudo-likelihood formulation can be viewed as an approximation to a hierarchical model

where the parameter combinations Sp, S(1 − p)π, and π are random variables arising from three

hyperdistributions. Because S, p, and π appear in more than one combination, it is awkward,

at best, to arrive at meaningful hyperdistributions for each of the three combinations. It is more

natural, and likely more accurate, to view the individual survival, capture, and ocean recovery rates

as arising from separate hyperdistributions and that was the approach taken here.

The first stage of the hierarchy is the distribution of recoveries (observed and estimated) for

a single upstream and downstream pair, which conditional on S, p, and π is assumed TBP (see

Equation (3.1)).

yut, ŷuo ∼ Trinomial(Ru, Sp, S(1− p)π)

ŷdo ∼ Binomial(Rd, π) (3.5)

For the second level of the hierarchy, survival rates were modelled according to a logistic-normal

distribution (Hinde and Demetrio, 1998), as were capture rates when modelled as a function of

release year. When capture rates were release specific, the prior distribution was Uniform(0,0.01);

similarly the priors for ocean recovery rates were Uniform(0,0.08). The upper bound of 0.01 on the

prior for p was based upon the trawl effort measure.

log
(

S

1− S

)
∼ Normal(x′β, σ2

S) (3.6)

log
(

p

1− p

)
∼ Normal(γ0 + γ1I1988, σ

2
p), or p ∼ Uniform(0, 0.01) (3.7)

π ∼ Uniform(0, 0.1) (3.8)
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At the top of the hierarchy, parameters of the logistic normal distributions were modelled as follows.

βi ∼ Normal
(

0,
π2

3× 12

)
i = 0, 1, . . . , 11 (3.9)

σ2
S ∼ Exponential (0.001) (3.10)

γ0 ∼ Normal
(
−5.60,

0.987
2

)
(3.11)

γ1 ∼ Normal
(

0,
0.987

2

)
(3.12)

σ2
p ∼ Exponential (0.001) (3.13)

The hyperparameters were chosen with uniform distributions for S and p in mind. In particular,

assuming that the prior for S was Uniform(0,1), then log(S/(1− S)) follows a logistic distribution

with mean 0 and variance π2/3. The covariates on the righthand side of (3.6) were standardized to

have an average of 0 and a standard deviation of 1, with the exception of indicator variables. With

the β’s defined as in (3.9) and σ2
S as in (3.10), the (unconditional) expected value and variance of the

lefthand side of (3.6) are nearly 0 and π2/3 (with some deviation due to values of non-standardized

covariates). Assuming a prior for the capture probabilities p of U(0,0.01), the priors for γ0, γ1, and

σ2
p were chosen by a similar procedure.

The hyperparameters for σ2
S and σ2

p, here 0.001, were selected in a non-standard, but pragmatic

manner. Three-fold cross-validation was conducted (discussed in detail later in the paper) and the

average absolute errors were compared for different values of the hyperparameters, with the value

0.001 yielding small average errors. When first fitting the models the hyperparameters were chosen

such that E[σ2
S ] = Var[β] and E[σ2

p] = Var[γ]. The resulting posterior distributions were such that

the average posterior fitted values were very close to the observed values with the random effects

relatively large. The predictive accuracy on the test sets of the cross-validation was relatively low,

however, suggesting that the training data sets were being overfit.

3.6 Model fitting

For the TBP and the PL formulations, the objective functions, the log likelihood and the pseudo-

likelihood, were directly maximized using the automatic differentation optimization program, AD

Model Builder (Otter Research Ltd., Sidney, BC, Canada). AD Model Builder was also used to

estimate the dispersion parameters of the PL model and to calculate covariance matrices.

Markov chain Monte Carlo (MCMC), in particular the Metropolis-Hastings algorithm, was used

to generate samples from the posterior distributions for the hyperparameters (β’s, γ’s, σ’s, π’s),

the survival, trawl capture, and ocean recovery probabilities. Candidate values were generated in

a block-like manner for the survival, capture, and ocean recovery parameters, respectively. The

gibbsit program of Raftery and Lewis (1996) was used to determine burn-in time and chain length.
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The proposal distributions were tuned such that a chain length of 40,000 was sufficient (with a burn-

in of 2,000 more than adequate). gibbsit was also used to determine the degree of thinning of

MCMC output to allow use of standard non-time series estimation of standard deviations for the

hyperparameters’ posterior distributions.

The survival model coefficients, the β’s in (3.6), were generated individually using a Metropolis

proposal, βcandidate ∼ Normal(βcurrent, σ2
tune). A candidate value for σ2

S was generated simultane-

ously with each individual β using a lognormal perturbation from the previous values, ln(σ2
S,candidate)

∼ Normal(ln(σ2
S,current), σ

2
tune). In both cases the variances of the normal distributions were tuned

to yield reasonable acceptance and apparent mixing rates. After each “new” value of βi and σS

was determined, candidate values for the individual release survival parameter, Sj , j=1,. . .,61, were

generated on an individual basis using uniform proposal distributions centered around the previous

value, with interval width used for tuning. A similar procedure was used for generating γ1, γ0, σp

and the trawl capture rates. For the ocean recovery probabilities, the π’s, release set-specific values

were generated individually.

The algorithm is sketched below for the case of covariate-based p. At iteration t,

1. For i in 0:11 { generate βi and σ2
S ; for j in 1:61 { generate Sj } }

2. For i in 0:1 { generate γi and σ2
p; for j in 1:61 { generate pj } }

3. For j in 1:19 { generate πj }

4 Results

4.1 Comparison of models

Estimates of the coefficients of the logistic model for S based on the TBP, PL, and hierarchical

formulations are shown along with standard errors in Table 3. The hierarchical model point esti-

mates are the means of the posterior distributions and the standard errors are based on the thinned

chain (chain length was 40,000, burn-in was 2000, and every 25th value was used for standard error

calculation). Focusing first on similarities, under all three formulations, whether p is release specific

or a function of year, the covariates with the largest t-statistics are the site indicator for release

from Sacramento, (log) flow, salinity, release temperature, exports, and turbidity. The effect on

survival of releasing at Sacramento, compared to further downstream at Courtland or Ryde, is

a lowering of survival, as would be expected. Increases in flow, and salinity, are associated with

increases in survival, while increases in release temperature have the opposite association. The ad-

verse effect of water temperature increases on the survival of outmigrating juvenile chinook salmon

in the Sacramento river was also reported by Baker et al. (1995). Of special interest to managers,

11



the exports effect is negative under all three formulations; the effect appears statistically significant

(using t statistics) under the TBP and hierarchical formulation, but not for the PL case. Similarly,

the cross-channel gate being open has a negative effect and is statistically significant for the TBP

and hierarchical cases but not the PL case.

The standard errors under the PL formulation are considerably larger than the TBP model,

roughly a five- to eight-fold increases, while the standard errors for the hierarchical model fell

between the other two. This is as would be expected assuming overdispersion. Under the TBP

model and using a t-test, all the covariates would be likely be considered statistically significant,

with the exception of the Courtland indicator.

The effect of modelling p on estimates of coefficients and standard errors for S was negligible

for the TBP and hierarchical formulations. For the PL model, coefficients did change considerably

for some covariates (e.g., Courtland indicator, size, flow) and the standard errors were consistently

smaller for the case of p being a function of year. The estimated overdispersion parameters changed

considerably; with release specific p, φ̂uo=84 (φ̂ut was bounded below by 1.0), and with covariate

based p, φ̂uo=104, with φ̂ut=9. The increased overall precision under the covariate based p model,

despite the increase in dispersion parameter values, is partially a reflection of the decrease in number

of parameters to estimate (61 parameters for release specific p versus 2 for the covariate based p).

The posterior distributions of the coefficients from the hierarchical model provide additional

information about the relationship between estimated survival and the covariates. Figure 1 contains

histograms of the posterior distributions for the survival coefficients. The percentage of values less

than zero is shown above the histograms. Coefficients that are consistently above or below zero

suggest a significant covariate effect on survival. With the exception of the Courtland indicator,

hatchery temperature, and the tide variable, all the coefficients are strongly positive or negative.

The posterior means for σ2
S and σ2

p provide a measure of the magnitude of the release specific

random effects on S and p, respectively. Not surprisingly, given the difference in magnitude of S

and p, σ2
S is considerably larger than σ2

p. Because the random effects enter into the calculation of S

and p in a non-linear way, it is simpler to look at the differences in what S would be if there was no

random error, εS , in the logit link. An indirect measure is to compare exp(x′β̂)/(1+exp(x′β̂)) to the

posterior sample values for S, and similarly for p. This was done on a per simulated set of values,

thus controlling somewhat for the uncertainty in the parameter estimates. The standard deviation

of the difference between the estimated expected S, without random effects, and a random S was

on average 3%, while for p the standard deviation was 0.008%.
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4.2 Cross-validation

To compare the predictive ability and stability of the three procedures, a three-fold cross-validation

was carried out. The cross-validation was restricted in that the training data subsets were chosen

from the upstream releases alone and stratified samples were drawn with year of release being

strata. The number of upstream releases in the three training subsets were 43, 40, and 40, while all

19 downstream releases were used. The restricted sampling was done to ensure that the complete

set of ocean recovery probabilities could be estimated in all cases. Relatedly, only the covariate-

based p model was fit because of the difficulty of doing predictions when the training set p’s would

necessarily differ from those for the test sets. Predictions were only made for trawl recoveries.

The coefficients for the each method and in each training set are given in Table 4. For covariates

which in the complete data set had significant coefficients under all three models, namely flow,

salinity, release temperature, and turbidity, the coefficients remained relatively large in absolute

value and with the same signs. The Sacramento indicator was one exception for the TBP model

with second training set. The hierarchical model was far more stable in the estimates, as the

standard deviations of estimated coefficients were considerably smaller in most cases.

The predictive ability did not differ very much, however, between the three methods. Each

method had a lower average absolute prediction error for exactly one of the three test sets.

5 Discussion

5.1 Sensitivity analysis

The assumption that the ocean recovery rate, π, is the same for a particular upstream and down-

stream release set is critical to the validity of the analysis, especially with regard to being able to

separate survival and trawl capture probabilities. There are several reasons for this assumption to

be wrong.

One reason is that downstream releases may experience some near immediate mortality after

being transferred from the transporting truck and entering the river. This could be due to fatal

temperature differentials, or disorientation, that makes the fish more vulnerable to predators. Thus

π would be lower for the downstream releases. Newman and Rice (1998) found some evidence of

a shock, temperature differential, effect on the upstream releases, in particular that there was a

threshold level beyond which recovery rates for upstream releases worsened. Comparison of the

release temperatures for the upstream and downstream members of a paired release, however,

revealed that the water temperatures for the downstream releases were usually lower than those

experienced by the upstream releases when they entered the river. This suggests that the shock

effect, if present, might not have been as severe for downstream releases.
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A related reason is that a culling of the weaker fish took place amongst the upstream releases

and that those surviving the downstream migration and not being caught were a group of relatively

strong fish compared to the more heterogenous downstream release group.

Conversely, upstream releases could experience a delayed mortality due to some factor encoun-

tered between the point of release and the in-river trawl. In other words they survived to the

in-river trawl and eluded capture but something upstream of the trawl has fatally harmed some of

them. This would cause π to be lower for the upstream survivors than for the downstream releases,

but seems less tenable than the above situations.

A fourth reason for differing π’s is differences in the ocean distribution and migration pattern

between upstream and downstream releases. Because of the spatial and temporal irregularity of

the ocean fishery, this could lead to different harvest rates on the two groups.

Lastly genetic and rearing environmental differences could exist between upstream and down-

stream releases. The upstream releases always came from a single hatchery, Feather River Hatchery,

however the downstream releases came from one of two hatcheries, Feather River Hatchery or Cole-

man National Fish Hatchery.

Assuming that downstream releases experience mortality higher than for upstream releases

reaching the downstream location, and that this be expressed as a fixed multiple of the mortality

rates of surviving upstream releases, the TBP model can be extended as follows.

ŷdo|π, ψ ∼ Binomial(Rd, ψπ) (5.1)

where 0 ≤ ψ ≤ 1. Extensions for the PL and hierarchical models are similar. Given multiple release

sets of one or more upstream releases paired with single downstream releases, the “shock” effect,

ψ, is estimable assuming that S can be modelled as a function of covariates. The TBP, PL, and

hierarchical models were re-fit with the shock parameter ψ. The prior for ψ for the hierarchical

model was uniform on (0,1).

The results for the models including ψ are summarized in Table 5. The estimates of the shock

parameter, ψ, differed considerably between the model formulations, with the hierarchical model

indicating a much stronger effect than the TBP and PL models. The magnitude of the variance of

the logistic normal error term for survival, σ2
S , decreased nearly 30%.

With the addition of the ψ parameter, the estimated values for S went down while estimates

of p and π increased. For example, the average π for the TBP model increased 48% for the release

specific p case. Note in particular the difference in the intercepts in Tables 3 and 5. Such changes

are not unexpected given that ŷdo/Rd essentially estimates π in the without shock case and the

product ψπ in the shock case. If shock is present, i.e. ψ < 1, and assuming the quality of the

fit to ŷdo will not worsen by adding another parameter, π must increase. And if π increases, the

products Sp and S(1 − p) will likely decrease to maintain the same quality of fit to yut and ŷuo.
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Relatedly, presence of a shock effect in downstream releases suggests the presence of a shock effect

in upstream releases, too, but the effect is absorbed by S. The use of estimates of S based on

experimental releases as proxies for the survival of naturally outmigrating juveniles could be overly

pessimistic given the latter remain in the same water.

General conclusions regarding which covariates appear to be most influential on S and the na-

ture of their relationship with S do not change, however, from the models which excluded shock.

Excluding the intercepts, the correlations between the t-statistics for the β’s exceed 0.97. Based

on the hierarchical model with covariate based p, for example, the coefficients with posterior dis-

tributions largely completely positive or negative were the Sacramento indicator (97% negative),

size (99% positive), flow and salinity (both 100% positive), release and hatchery temperatures

(100% and 94% negative), exports and the cross-channel gate indicator (both 100% negative). The

inclusion of hatchery temperature in this set is the sole contrast with the case without ψ.

5.2 More complex hierarchical models

The hierarchical formulation used is arguably an improvement over the pseudo-likelihood approach

in that the latter can be viewed as an approximation to a hierarchical model for the parameter

combinations Sp and S(1 − p)π of the TBP. The hierarchical model separated the random effects

of S and p in particular, which seems more realistic than modelling the parameter combinations.

One assumption of the hierarchical formulation, however, is that for a given release group there

is just one set of S, p, and π values. Thus the variation in (S,p,π) combinations is just between

releases. With releases numbering 50,000 or so fish, there is undoubtedly variation in (S,p,π)

within releases, too. It can take one to two hours to release the fish into the river and variation

in the subsequent downstream path could be quite high. The duration of the recovery period from

time of release, the time between the first recovery and the last recovery, can be a week or more.

Water conditions vary during this time and single measurements for flow, exports, etc. are coarse

approximations to what the release experiences.

A potentially more realistic formulation is to assume that clusters, or schools, of fish form

within a given release. Each cluster then has a particular S, p, and π realization from a set of

hyperdistributions for S, p, and π, where the same hyperdistributions are assumed for all clusters

within the same release. For example, suppose that average cluster size is µc and the number of

clusters formed within an upstream release of size Ru is Poisson(Ru/µc). Given k clusters, fish

are randomly assigned to a particular cluster according to a Multinomial(Ru,1/k,. . . ,1/k). For

each cluster a random set (S,p,π) is drawn from the hyperdistributions for S, p, and π specified

by the covariate values for the release. The numbers of yuti and yuoi from cluster i are again

TBP. The observed numbers for yut and ŷuo are sums over the k clusters. It can be shown that the
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overdispersion will fall somewhere between the undispersed case and the release specific hierarchical

formulation used in this paper. Thus the hierarchical model used herein may exaggerate the degree

of overdispersion. The use of embedded replicate tags, where the tag numbers vary within the

same spool of tagging wire used for a release, would provide useful additional information about

the degree of overdispersion. Alternatively, the use of unique tag codes per fish with individual fish

covariates recorded could potentially provide data that would better account for heterogeneity in

survival and capture probabilities and thereby reduce overdispersion.

5.3 Comparison with the unpaired releases analysis

Comparison of the results of the paired release analysis with those for the unpaired release analysis

(Newman and Rice, 2002) is useful for both fisheries science and statistical reasons, but it is not

straightforward. The unpaired releases analysis was modelling the product Sp (with the assumption

that the ratio of S’s could be estimated by dividing fitted estimates of Sp by a measure of trawl

fishing effort, see Equation (2.1)), while S and p were modelled separately with the paired releases.

Thus differences in estimated coefficients can be partially due to the effect of covariates on p. The

scope of data analyzed by Newman and Rice (2002) was considerably wider in that releases at

several other locations were included, 101 upstream releases were used; this led to more release site

indicators and more complicated site with export and gate interactions. Also, the ratio of exports

to flow was used by Newman and Rice instead of exports alone. The unpaired analysis used a log

link function with release number as an offset, in contrast to the logistic link. Finally, the unpaired

data was fit using ridge regression to increase the stability of estimated coefficients and no model

selection was done.

To make the comparison somewhat more equivalent, the paired release models were fit using the

ratio of exports to flow substituted for exports. The practical effect of using exports or the export

to flow ratio on the results is negligible, but the underlying reasoning for the two measures differ:

with exports, it is the absolute volume removed that is assumed to have an effect on survival, while

with exports/flow, it is the relative volume removed. Note that exports/flow implies an interaction

between exports and flow with survival. With log and logit links, however, the relationship between

exports and survival is nonlinear, too.

The parameter estimates for the Newman and Rice model and TBP, PL, and hierarchical models

(with release specific p) are shown in Table 6. Because of differences in the link functions, and Sp

and S being modeled in the two cases, the coefficients and standard errors are not on the same

scale. The TBP results are included for comparison with previous tables, but its standard errors

are considered unrealistically small and discussion focuses here on PL and hierarchical compared to

the unpaired analysis. For the unpaired and paired analyses, increasing flow and salinity increases
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estimated Sp and S, while increasing release temperatures, exports and having the cross-channel

gate open decreases Sp and S. The effect of increasing exports/flow was relatively weak for the

unpaired and the PL paired analyses, in contrast to the relatively strong effect in the hierarchical

model.

The greatest inconsistencies were for size, hatchery temperature, tide, and turbidity. Size was

found to have a moderate positive relationship with Sp with the unpaired analysis and strongly

positive relationship with S with the hierarchical model, but a weak negative relationship under the

PL model. A positive relationship seems more intuitively reasonable. The hatchery temperature

and tide coefficients changed signs between methods, but the effects were generally weak in all

cases. The turbidity effect was negligible for the unpaired analysis, but strongly positive for the

paired analysis—the discrepancy remains puzzling. When modelling Sp if turbidity increased S

(due to lower visibility by predators) and increased p (due to lowered awareness of the net), the

combined effect might be negligible.

The paired analysis could be a more powerful analysis. If the assumptions behind the pairing

hold true, separate estimates of S and p are possible. Thus if factors have a different effect on

S than on p, then the paired analysis allows a narrower modelling of covariate effects. Another

reason for additional power is the data are coming from a set of (semi-)randomized experiments.

If a given pair of identical release groups was randomly assigned to either upstream release or

downstream release, then one replication of a randomized controlled experiment has been carried

out. The qualifier “semi” is used because the release groups are often raised in separate ponds at

the hatchery thus there is the potential for pond effects. The release pairs were in fact quite similar

in terms of size and seem to be replicates by most measures of similarity tried. The advantage of

a randomized experiment in this setting, assuming the assumption of equal π holds (or at least

the downstream releases have recovery rate ψπ), is that differences in the ocean recovery rates for

the upstream releases and downstream releases are due, on average, entirely to the environmental

hazards (including being caught by the in-river trawl) experienced by the upstream releases. The

estimates of S and p within a given paired release thus should be due solely to the environmental

hazards.

For both the paired and unpaired release analyses, however, the modelling of S was based on

multiple experiments spanning a 27 year period. Because of the potential for confounding variables,

such as unaccounted for within year effects, arguments for cause and effect relationships between

the covariates and survival must be made with care.
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5.4 Choosing between modelling approaches

For reasons given previously the TBP formulation seems unreasonable given known sources of

overdispersion. Estimates of standard errors are likely underestimates; the relatively high between

training set variation in estimated coefficients supports that contention. The problems of het-

erogeneous survival and capture probabilities arise in many release-recovery studies, even when

covariates are included to model the survival and capture probabilities.

Pseudo-likelihood and hierarchical models are means of addressing the problems. Given a

particular release-recovery data set, one may want to try both approaches to modelling the data.

In the case of similar point estimates and posterior means, and similar variation, one will be re-

assured by the robustness of the conclusions drawn. In the case of differences, as occurred with

these data, cross-validation to compare predictive ability and between training set stability can

be used to select one method over another. With these data, the predictive ability differed little

between the methods. The hierarchical model was considerably more stable, however, and the

signs of the coefficients were more sensible given the nature of the physical and biological processes

involved in survival and capture.
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Figure 1 Posterior distributions of the coefficients for survival from the hierarchical model with

release-specific p. Vertical lines are drawn at zero and the percentage of values less than zero are

shown above the histograms.
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Table 1: Summary of release and recovery information for 61 upstream releases and 19 downstream

releases. Ru and Rd are the number of fish released either upstream or downstream of the trawl. The

number of upstream fish recovered by the trawl are denoted yut, while ŷuo and ŷdo are the estimated

number of recoveries in the ocean fisheries of upstream and downstream releases, respectively. The

fraction of recoveries to releases are denoted rut, r̂uo, and r̂do.
Min 1st Qu. Median 3rd Qu. Max

Ru 10,887 50,601 51,819 57,561 160,151

yut 2 14 35 67 145

ŷuo 10 98 360 562 1979

rut 0.00005 0.00032 0.00059 0.00102 0.00272

r̂uo 0.00020 0.00397 0.00536 0.01050 0.02485

Rd 42,000 48,069 54,055 71,332 110,122

ŷdo 129 359 782 1136 3338

r̂do 0.00297 0.00739 0.01074 0.02070 0.03241
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Table 2: Summary of covariates used in modelling of S. x and s are the mean and sample standard

deviation.

Covariate Description x s

Size average length in mm 80.92 6.11

Log Flow log transformed median river flow in cfs

during the outmigration period 9.53 0.45

Salinity water salinity as measured by resistance, micro mho/cm 5219.79 3756.16

Release Temperature river water temperature (Fo) at release 65.71 4.75

Hatchery Temperature water temperature (Fo) in hatchery on day of release 54.55 3.04

Tide a measure of the magnitude of the change in low-low and

high-low tides and whether the delta was filling or draining 1.59 0.70

Exports median volume of water in cfs diverted

during the outmigration period 4888.23 2141.72

Gate indicator for position of the cross-channel gate located

just below Courtland; 1 if open and 0 if closed 0.61 0.49

Turbidity turbidity of water (formazine turbidity units) 8.18 3.70
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Table 3: Estimated coefficients, and standard errors as subscripts, for models of S and p under the

TBP, PL, and hierarchical formulations. Standard errors for the hierarchical model are calculated

from thinned MCMC output. The covariates labelled Exports and Gate are interactions with

indicators for release from Sacramento or Courtland.

Release specific p p=f(year)

TBP PL Hier. TBP PL Hier.

Intercept 1.310.06 1.660.37 0.590.10 1.380.05 1.750.32 0.650.10

Sacramento -0.680.07 -0.790.65 -0.560.16 -0.820.07 -1.540.42 -0.620.17

Courtland 0.010.07 0.310.57 -0.020.17 -0.170.06 -1.890.41 -0.090.17

Size -0.050.03 -0.160.18 0.230.06 -0.100.02 -0.320.13 0.240.06

Log Flow 1.400.05 1.630.38 0.860.12 1.380.05 1.280.33 0.860.12

Salinity 0.530.03 0.540.21 0.300.09 0.600.03 0.660.15 0.350.09

Release Temp. -0.580.03 -0.710.20 -0.800.09 -0.630.03 -0.800.17 -0.810.09

Hatchery Temp. -0.310.03 -0.370.20 0.000.09 -0.330.03 -0.270.16 -0.010.09

Tide 0.090.02 0.160.20 -0.040.06 -0.050.02 -0.110.13 -0.030.06

Exports -0.440.03 -0.380.25 -0.310.10 -0.440.03 -0.260.19 -0.320.09

Gate -0.770.08 -1.190.65 -0.780.15 -0.610.07 -0.230.39 -0.750.15

Turbidity 1.330.05 1.620.32 0.380.13 1.440.05 1.640.26 0.370.13

Interceptp — — — -6.750.02 -6.740.08 -6.640.05

1988p — — — 0.700.04 0.610.14 0.600.09

σ2
S — — 0.140.01 — — 0.140.01

σ2
p — — — — — 0.050.01
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Table 4: Cross-validation results. Estimated coefficients, for covariate-based p model, for the three

methods based on three training data subsets of the upstream releases. Values reported for the

Hierarchical model are the means of the posterior distributions. |PE| is the average absolute

prediction error for the corresponding test sets. The second table gives the between training subset

coefficients’ standard deviations.

TBP PL Hierarchical

Train 1 Train 2 Train 3 Train 1 Train 2 Train 3 Train 1 Train 2 Train 3

Intercept 1.91 1.38 1.33 2.78 1.47 1.73 0.74 0.75 0.71

Sacramento -1.07 0.15 -0.95 -2.14 -0.79 -1.38 -0.51 -1.03 -0.53

Courtland -0.25 0.35 -0.45 -1.59 -0.93 -0.94 0.10 -0.51 -0.21

Size -0.25 -1.27 -0.06 -0.55 -0.17 -0.31 0.15 0.00 0.42

Log Flow 1.96 1.04 1.40 1.10 0.59 1.56 1.01 0.86 1.00

Salinity 0.78 0.36 0.51 1.02 0.23 0.69 0.32 0.27 0.49

Release Temp. -0.72 -0.65 -0.66 -1.49 -0.48 -0.89 -0.65 -0.83 -0.94

Hatchery Temp. -0.21 -0.37 -0.20 0.44 -0.38 -0.17 0.00 -0.15 -0.06

Tide -0.06 0.21 -0.02 -0.19 -0.02 -0.03 0.07 -0.20 -0.09

Exports -0.77 0.34 -0.58 -0.97 0.52 -0.50 -0.46 -0.03 -0.49

Gate -0.46 -2.05 -0.43 0.30 -1.54 -0.26 -0.75 -0.51 -0.74

Turbidity 1.66 1.78 1.04 0.26 1.98 1.19 0.47 0.86 0.10

Interceptp -6.80 -6.73 -6.70 -6.88 -6.66 -6.69 -6.69 -6.60 -6.62

1988p 0.65 0.54 0.76 0.68 0.50 0.62 0.50 0.60 0.68

|PE| 20.23 20.38 16.26 21.56 22.37 13.23 21.74 18.82 19.26

Coefficients’ standard deviation.

TBP PL Hier.

Intercept 0.32 0.70 0.02

Sacramento 0.67 0.67 0.29

Courtland 0.42 0.38 0.31

Size 0.10 0.19 0.22

Log Flow 0.46 0.49 0.08

Salinity 0.22 0.40 0.12

Release Temp. 0.04 0.51 0.15

Hatchery Temp. 0.09 0.42 0.08

Tide 0.14 0.10 0.14

Exports 0.53 0.76 0.26

Gate 0.92 0.94 0.14

Turbidity 0.40 0.70 0.38

Interceptp 0.05 0.12 0.05

1988p 0.11 0.09 0.09
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Table 5: Sensitivity analysis. Estimated coefficients, and standard errors as subscripts, for models

of S (and covariate based p) under the TBP, PL, and hierarchical formulations when temperature

shock (Shock) is allowed for downstream releases. The covariates labelled Exports and Gate are

interactions with indicators for release from Sacramento or Courtland.

Including shock effect for downstream releases

Release specific p p=f(year)

TBP PL Hier. TBP PL Hier.

Intercept 0.270.07 0.470.34 -1.020.08 0.750.07 1.160.37 -1.020.10

Sacramento -0.720.05 -0.960.33 -0.250.13 -0.850.05 -1.380.34 -0.240.13

Courtland -0.150.04 -0.090.30 0.110.14 -0.260.04 -0.740.33 0.040.13

Size -0.020.02 -0.040.11 0.110.05 -0.060.02 -0.220.12 0.100.05

Log Flow 1.150.04 1.250.26 0.570.09 1.220.04 1.170.26 0.560.09

Salinity 0.460.02 0.440.14 0.210.07 0.560.03 0.590.13 0.230.07

Release Temp. -0.440.02 -0.470.14 -0.550.07 -0.540.02 -0.660.15 -0.560.07

Hatchery Temp. -0.310.02 -0.330.14 -0.120.07 -0.320.02 -0.280.13 -0.100.07

Tide 0.030.02 0.070.11 -0.020.05 0.030.02 -0.080.11 0.000.05

Exports -0.390.03 -0.350.16 -0.200.07 -0.420.03 -0.270.16 -0.210.07

Gate -0.400.04 -0.470.31 -0.630.12 -0.380.04 -0.190.30 -0.600.13

Turbidity 1.080.04 1.160.23 -0.210.12 1.260.04 1.430.23 0.040.10

Shock 0.640.02 0.650.07 0.400.01 0.760.02 0.800.09 0.410.01

Interceptp — — — -6.610.03 -6.620.11 -5.930.06

1988p — — — 0.800.05 0.650.15 0.680.09

σ2
S — — 0.100.01 — — 0.100.01

σ2
p — — — — — 0.060.01
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Table 6: Estimated coefficients, and standard errors as subscripts, for unpaired releases analysis

(Newman and Rice, 2002), for the TBP, PL, and hierarchical models with exports/flow substituted

for exports. Release specific estimates of capture rate were used for the paired analysis. Intercepts

and site indicators are not shown due to differences in the site reference set between the unpaired

and paired analyses. A ridge parameter, λ=30, was used in the estimation of coefficients for the

unpaired release analysis. Standard errors from hierarchical model are based on thinned MCMC

output.

Unpaired TBP PL Hierarchical

β̂λ β̂λ/se β̂ β̂/se β̂ β̂/se β̂ β̂/se

Size 0.070.04 1.76 -0.060.03 -2.24 -0.160.19 -0.88 0.180.06 3.06

Log Flow 0.100.06 1.76 1.150.05 24.12 1.380.33 4.21 0.700.10 6.77

Salinity 0.200.06 3.47 0.560.03 16.51 0.560.23 2.41 0.390.09 4.17

Release Temp. -0.380.06 -6.36 -0.590.03 -18.61 -0.730.21 -3.44 -0.870.09 -9.77

Hatchery Temp. -0.010.06 -0.18 -0.270.03 -9.65 -0.350.21 -1.63 0.090.09 1.03

Tide -0.090.04 -2.47 0.070.03 2.75 0.120.20 0.57 -0.050.06 -0.93

Exports/Flow -0.100.06 -1.60 -0.380.04 -10.15 -0.290.29 -1.02 -0.500.11 -4.71

Gate -0.130.05 -2.83 -0.890.08 -10.58 -1.220.68 -1.79 -0.720.16 -4.52

Turbidity -0.020.04 -0.56 1.390.05 28.12 1.680.31 5.37 0.430.12 3.53

26



Figure 1: Posterior distributions of the coefficients for survival from the hierarchical model with

release-specific p. Vertical lines are drawn at zero and the percentage of values less than zero are

shown above the histograms.
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