Population trends and the influence of restoration actions on winter-run Chinook salmon

$\therefore \because \because: \because: \quad: \quad$: Wim Kimmerer
Romberg Tiburon Center for Environmental Studies San Francisco State University

Randy Brown, DWR (Retired)

Summary

- Simple model of winter run life cycle
- Identify managementrelated variables
- Which have trends?
- Do these add up to the trajectory observed?

This is our perspective

Time series of winter run escapement

A simple exploratory model of winter run survival

$$
N_{@ 3}=N_{@ 0} F S_{1} S_{2} S_{3} S_{4} S_{5} \ldots
$$

$\begin{array}{ll}N_{\boxplus 0,3} & \text { Female population at age } 0 \text { or } 3 \\ F & \text { Average fecundity } \\ S_{i} & \text { Survival through life stage or event } i\end{array}$

Assumptions

- No density dependence
- All reproduction is at age 3
- Sex ratio is constant
- Survival fractions are independent

A simple exploratory model of winter run survival

$$
N_{@ 3}=\left(N_{@ 0} F S_{\mathrm{Egq-RBDD}}+\mathrm{H}\right) \mathrm{S}_{\mathrm{T}} \mathrm{~S}_{\mathrm{F}} \mathrm{~S}_{0}
$$

(can be treated as a single unknown parameter)

Migration Timing at Red Bluff Diversion Dam

Spawning Distribution

Temperature survival model for eggs/alevins

Problem:
reports don't specify time
of exposure

Temperature effects on survival

Temperature effects based on spawning location

Ocean Harvest

Harvest rate of winterrun tracks that of all Central Valley stocks

Both have declined substantially in recent years

Juvenile Production

Model of winter run escapement

Environmental variables have little effect

Model projections

Summary: Winter-run model

- Preliminary results
- Strong effects of harvest and temperature (?)
- Weak effect of hatchery
- No effect of other environmental variables

Thanks to: Jerry Boles, Pat Brandes, Steve Cramer, Tom Haltom, Doug Killam, Bill Poytress, and Ryan Martin

