Enclosure 1

Storages

Federal End of the Month Storage/Elevation (TAF/Feet)

		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Trinity	1844	1964	1893	1782	1679	1555	1439	1409	1390	1400	1432	1518	1615
	Elev.	2338	2333	2325	2318	2308	2298	2295	2294	2295	2297	2305	2313
Whiskeytown	207	238	238	238	238	238	230	206	206	206	206	206	206
	Elev.	1209	1209	1209	1209	1209	1207	1199	1199	1199	1199	1199	1199
Shasta	3880	4132	4011	3656	3077	2630	2351	2226	2221	2351	2548	2895	3351
	Elev.	1052	1048	1035	1011	991	977	970	970	977	987	1003	1023
Folsom	817	793	904	825	591	449	402	345	296	256	306	412	576
	Elev.	449	459	452	427	410	403	395	386	379	388	405	426
New Melones	2019	1977	1946	1922	1848	1784	1740	1709	1721	1735	1747	1770	1789
	Elev.	1050	1047	1045	1038	1032	1028	1025	1026	1027	1028	1031	1033
San Luis	876	773	574	266	88	8	72	198	382	526	666	699	762
	Elev.	510	485	445	421	399	414	431	451	476	491	493	505
Total		9877	9567	8689	7521	6665	6234	6093	6215	6474	6905	7500	8298

State End of the Month Reservoir Storage (TAF)

or of mile													
San Luis	898	849	761	652	609	510	566	593	605	719	746	723	803
Total San													
Luis (TAF)	1774	1622	1335	919	697	518	638	791	986	1245	1411	1422	1565

Monthly River Releases (TAF/cfs)

Trinity	TAF	36	92	47	28	53	52	23	18	18	18	17	18
	cfs	600	1,498	783	450	857	870	373	300	300	300	300	300
Clear Creek	TAF	13	13	17	9	9	9	12	12	12	12	11	12
	cfs	218	216	288	150	150	150	200	200	200	200	200	200
Sacramento	TAF	297	492	625	799	645	476	369	268	200	200	180	200
-	cfs	5000	8000	10500	13000	10500	8000	6000	4500	3250	3250	3250	3250
merican	TAF	506	77	167	293	204	107	92	89	92	61	56	77
	cfs	8500	1250	2811	4768	3311	1798	1500	1500	1500	1000	1005	1250
Stanislaus	TAF	83	96	56	18	18	18	49	12	12	14	13	12
	cfs	1400	1555	940	300	300	300	797	200	200	232	236	200
Feather	TAF	208	92	119	215	123	108	77	74	77	77	69	108
	cfs	3500	1500	2000	3500	2000	1815	1250	1250	1250	1250	1250	1759

Trinity Diversions (TAF)

-		Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Carr PP		39	67	85	80	71	62	16	21	12	3	2	15
Spring Crk. PP		10	60	70	70	60	60	30	15	12	10	20	30
Delta Summary	(TAF)												
· · · · · · ·	()	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Tracy		93	61	53	225	260	262	265	250	190	190	120	200
USBR Banks		0	0	0	18	18	18	0	0	0	0	0	0
Contra Costa		12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0	14.0	12.7

Total USBR	106	74	63	254	291	294	282	268	208	204	134	213
State Export	77	31	47	121	64	150	151	106	186	190	127	200
Total Export	182	105	110	375	355	444	433	374	394	394	261	413
COA Balance	25	25	0	0	0	87	87	87	87	87	46	46
Old/Middle River Std.												
Old/Middle R. calc.	-164	146	-1,354	-4,912	-4,693	-5,945	-5,221	-4,877	-4,978	-4,960	-3,536	-5,040
Computed DOI	30476	9516	7900	6507	4002	3009	4067	4572	6767	9728	11400	12379
Excess Outflow	19079	1610	0	0	0	0	65	67	2261	3725	0	976
% Export/Inflow	8%	11%	13%	35%	40%	54%	54%	52%	47%	41%	29%	34%
% Export/Inflow std.	35%	35%	35%	65%	65%	65%	65%	65%	65%	65%	45%	35%

Hydrology

	Trinity	Shasta	Folsom	New Melones
Water Year Inflow (TAF)	627	3,621	2,352	972
Year to Date + Forecasted % of mean	52%	65%	86%	92%

٦

Storages

Federal End of the Month Storage/Elevation (TAF/Feet)

1844	Apr	May	Jun	Jul	A.u.e.	C	0-4	AL	Dee	Let a	E a la	
4044				Jui	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
1844	1878	1860	1773	1659	1514	1381	1343	1330	1360	1425	1535	1629
Elev.	2332	2331	2325	2316	2304	2293	2290	2288	2291	2297	2306	2314
207	238	238	238	238	238	230	206	206	206	206	206	206
Elev.	1209	1209	1209	1209	1209	1207	1199	1199	1199	1199	1199	1199
3880	4167	4117	3801	3266	2874	2647	2552	2601	2792	3198	3682	4240
Elev.	1054	1052	1040	1019	1002	991	987	989	998	1016	1036	1056
817	823	946	831	660	598	538	489	460	449	477	530	595
Elev.	452	463	452	435	428	421	415	411	410	414	420	428
2019	1999	2017	2021	1961	1898	1857	1815	1832	1855	1887	1941	1918
Elev.	1052	1054	1054	1049	1043	1039	1035	1037	1039	1042	1047	1045
876	804	582	389	200	97	150	268	449	656	801	918	966
Elev.	512	481	454	428	414	436	462	493	524	524	536	543
	9909	9760	9052	7984	7219	6802	6673	6878	7318	7994	8812	9554
	Elev. 207 Elev. 3880 Elev. 817 Elev. 2019 Elev.	Elev. 2332 207 238 Elev. 1209 3880 4167 Elev. 1054 817 823 Elev. 452 2019 1999 Elev. 1052 876 804 Elev. 512	Elev. 2332 2331 207 238 238 Elev. 1209 1209 3880 4167 4117 Elev. 1054 1052 817 823 946 Elev. 452 463 2019 1999 2017 Elev. 1052 1054 Elev. 1052 481	Elev. 2332 2331 2325 207 238 238 238 Elev. 1209 1209 1209 3880 4167 4117 3801 Elev. 1054 1052 1040 817 823 946 831 Elev. 452 463 452 2019 1999 2017 2021 Elev. 1052 1054 1054 Br6 804 582 389 Elev. 512 481 454	Elev. 2332 2331 2325 2316 207 238 238 238 238 Elev. 1209 1209 1209 1209 3880 4167 4117 3801 3266 Elev. 1054 1052 1040 1019 817 823 946 831 660 Elev. 452 463 452 435 2019 1999 2017 2021 1961 Elev. 1052 1054 1054 1049 876 804 582 389 200 Elev. 512 481 454 428	Elev. 2332 2331 2325 2316 2304 207 238 238 238 238 238 238 238 Elev. 1209 1209 1209 1209 1209 1209 3880 4167 4117 3801 3266 2874 Elev. 1054 1052 1040 1019 1002 817 823 946 831 660 598 Elev. 452 463 452 435 428 2019 1999 2017 2021 1961 1898 Elev. 1052 1054 1054 1049 1043 876 804 582 389 200 97 Elev. 512 481 454 428 414	Elev. 2332 2331 2325 2316 2304 2293 207 238 238 238 238 238 238 230 Elev. 1209 1209 1209 1209 1209 1209 1209 3880 4167 4117 3801 3266 2874 2647 Elev. 1054 1052 1040 1019 1002 991 817 823 946 831 660 598 538 Elev. 452 463 452 435 428 421 2019 1999 2017 2021 1961 1888 1857 Elev. 1052 1054 1054 1049 1043 1039 876 804 582 389 200 97 150 Elev. 512 481 454 428 414 436	Elev. 2332 2331 2325 2316 2304 2293 2290 207 238 238 238 238 238 238 238 230 206 Elev. 1209 1209 1209 1209 1209 1207 1199 3880 4167 4117 3801 3266 2874 2647 2552 Elev. 1054 1052 1040 1019 1002 991 987 817 823 946 831 660 598 538 489 Elev. 452 463 452 435 428 421 415 2019 1999 2017 2021 1961 1898 1857 1815 Elev. 1052 1054 1054 1049 1043 1039 1035 876 804 582 389 200 97 150 268 Elev. 512 481	Elev. 2332 2331 2325 2316 2304 2293 2290 2288 207 238 238 238 238 238 238 230 206 206 Elev. 1209 1209 1209 1209 1209 1207 1199 1199 3880 4167 4117 3801 3266 2874 2647 2552 2601 Elev. 1054 1052 1040 1019 1002 991 987 989 817 823 946 831 660 598 538 489 460 Elev. 452 463 452 435 428 421 415 411 2019 1999 2017 2021 1961 1888 1857 1815 1832 Elev. 1052 1054 1054 1049 1043 1039 1035 1037 876 804 582 389	Elev. 2332 2331 2325 2316 2304 2293 2290 2288 2291 207 238 238 238 238 238 238 230 206 206 206 206 Elev. 1209 1209 1209 1209 1209 1207 1199 1199 1199 3880 4167 4117 3801 3266 2874 2647 2552 2601 2792 Elev. 1054 1052 1040 1019 1002 991 987 989 998 817 823 946 831 660 598 538 489 460 449 Elev. 452 463 452 435 428 421 415 411 410 2019 1999 2017 2021 1961 1898 1857 1815 1832 1855 Elev. 1052 1054 1054 1043	Elev.2332233123252316230422932290228822912297207238238238238238230206206206206Elev.120912091209120912091207119911991199119938804167411738013266287426472552260127923198Elev.105410521040101910029919879899981016817823946831660598538489460449477Elev.45246345243542842141541141041420191999201720211961188818571815183218551887Elev.1052105410541049104310391035103710391042Elev.1052105410541049104310391035103710391042Elev.512481454428414436462493524524	Elev.23322331232523162304229322902288229122972306207238238238238238230206206206206206206Elev.120912091209120912091207119911991199119911991199388041674117380132662874264725522601279231983682Elev.1054105210401019100299198798999810161036817823946831660598538489460449477530Elev.452463452435428421415411410414420201919992017202119611888185718151832185518871941Elev.10521054105410491043103910351037103910421047Elev.1052105410541049104310351037103910421047Elev.512481454428414436462493524524536

State End of the Month Reservoir Storage (TAF)

Olovine													
San Luis	898	844	716	627	563	544	685	829	974	1131	985	1021	1062
Total San													
Luis (TAF)	1774	1648	1297	1015	763	642	835	1097	1423	1787	1786	1939	2028

Monthly River Releases (TAF/cfs)

Trinity	TAF	36	92	47	28	53	52	23	18	18	18	17	18
-	cfs	600	1,498	783	450	857	870	373	300	300	300	300	300
Clear Creek	TAF	13	13	17	9	9	9	12	12	12	15	11	12
	cfs	218	216	288	150	150	150	200	200	200	240	200	200
Sacramento	TAF	268	461	625	799	645	476	369	268	200	200	278	307
	cfs	4500	7500	10500	13000	10500	8000	6000	4500	3250	3250	5000	5000
American	TAF	476	154	252	250	136	132	123	119	123	123	208	246
	cfs	8000	2500	4229	4067	2217	2226	2007	2000	2000	2000	3750	4000
Stanislaus	TAF	83	96	56	18	18	18	49	12	12	14	13	93
	cfs	1400	1555	940	300	300	300	797	200	200	232	236	1521
Feather	TAF	208	92	149	246	246	119	108	104	108	108	97	108
	cfs	3500	1500	2500	4000	4000	2000	1750	1750	1750	1750	1750	1750

Trinity Diversions (TAF)

Trinity Diversions		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
		Арі	way	Juli	501	Aug	Seb	001	NOV	Dec	Jan	Teb	Widi
Carr PP		35	24	71	84	85	76	26	25	9	0	2	35
Spring Crk. PP		15	25	60	75	75	75	40	20	12	20	35	60
Delta Summary (TAF)												
		Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Tracy		129	74	219	273	273	261	265	254	260	205	215	221
USBR Banks		0	0	0	24	24	24	0	0	0	0	0	0
Contra Costa		12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0	14.0	12.7
Total USBR	1	142	86	229	308	310	299	282	272	278	219	229	234
State Export		142	18	106	141	183	261	202	275			215	187
		100	10	100		100	201	200	210	200	00	210	101
Total Export		247	105	335	449	493	560	580	547	538	269	444	421
COA Balance		25	25	0	0	16	153	230	224	224	224	224	224
Old/Middle River Std.													
Old/Middle R. calc.		-483	281	-3,941	-5,605	-6,217	-7,257	-6,923	-6,927	-6,577	-3,086	-4,826	-3,440
		22020	10000	7000	0507	4000	2000	4000	4505	0000	47500	22054	259.40
Computed DOI		33838	13388	7900	6507	4002	3009	4002	4505			23954	25849
Excess Outflow		22441	4441	0	0	0	0	0	0	3823		12553	14445
% Export/Inflow		10%	9%	33%	40%	50%	62%	62%	62%			25%	20%
% Export/Inflow std.		35%	35%	35%	65%	65%	65%	65%	65%	65%	65%	45%	35%

Hydrology

	Trinity	Shasta	Folsom	New Melones	
Water Year Inflow (TAF)	539	3,864	2,536	1080	
Year to Date + Forecasted % of mean	45%	70%	93%	102%	

Upper Sacramento	o River	– April	2018 Pr	elimina	ry Tem	peratur	e Anal	ysis						
Summary of Ter	mperature	e Results b	y Month (Monthly A	Average T	emperatu	re °F)	-						
Initial Compliance Location (°F DAT)	APR	MAY	JUN	JUL	AUG	SEP	OCT	Late Sep- Oct Uncertainty Estimation						
March 90%-Exceedance Outlook – 10% Historical Meteorology Keswick Dam KWK 52.8 52.5 53.4 53.9 54.2 52.7 54 57														
Keswick Dam KWK 52.8 52.0 52.5 53.4 53.9 54.2 52.7 54 - 57 See P. aby Clear Creak CCP 53.0 52.6 53.1 54.0 54.3 54.5 52.6 54.5														
Sac. R. abv Clear Creek CCR	53.0	52.6	53.1	54.0	54.3	54.5	52.6	54 - 58						
Balls Ferry BSF	55.3	56.0	56.0	56.0	56.0	56.0	53.7	55 - 59						
March 90%-Exceedance Outlook – 50% Historical Meteorology														
Keswick Dam KWK	52.3	52.4	52.9	53.8	54.0	53.9	52.7	53 - 56						
Sac. R. abv Clear Creek CCR	52.3	52.9	53.4	54.2	54.4	54.1	52.4	54 - 57						
Balls Ferry BSF	54.1	56.0	56.0	56.0	56.0	55.5	53.0	55 - 58						
March :	50%-Exce	edance Ou	ıtlook — 1()% Histor	ical Meteo	rology								
Keswick Dam KWK	52.9	51.7	52.4	53.4	53.9	54.1	52.7	54 - 57						
Sac. R. abv Clear Creek CCR	53.1	52.4	53.1	54.0	54.3	54.4	52.6	54 - 58						
Balls Ferry BSF	55.4	56.0	55.9	56.0	56.0	56.0	53.6	55 - 59						
March 50%-Exceedance Outlook – 50% Historical Meteorology														
Keswick Dam KWK	52.3	52.0	52.7	53.8	54.0	54.6	51.7	53 - 55						
Sac. R. abv Clear Creek CCR	52.3	52.7	53.3	54.2	54.3	54.7	51.5	53 - 57						
Balls Ferry BSF	54.3	56.0	55.9	56.0	56.0	56.0	52.2	54 - 58						

TT

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty

estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on April 3, April 4, and April 3 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The April 2018 temperature profile does not yet exhibit conditions for ideal model computations (still nearly isothermal conditions although warming will initiate stratification). The model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project.

Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting low creek flows cause significant additional warming in the upper Sacramento River during spring.
Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% runoff exceedance studies.

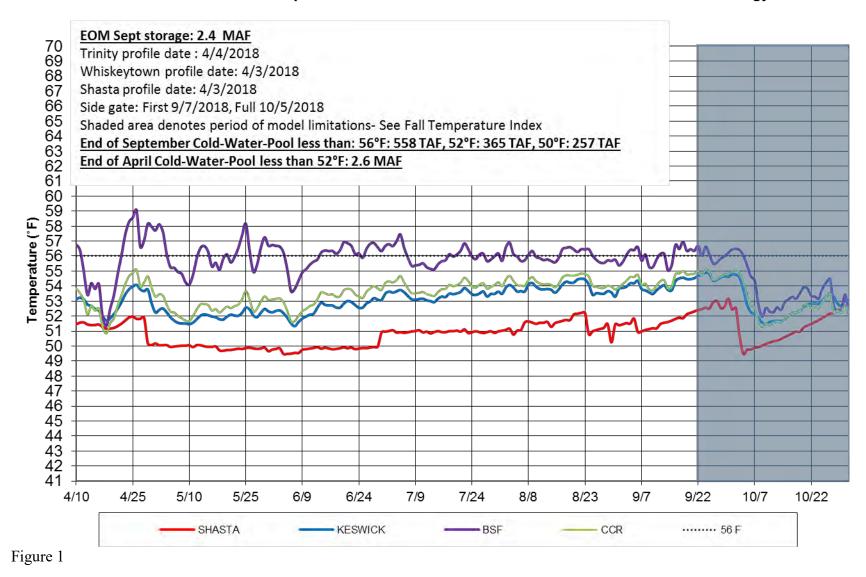
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

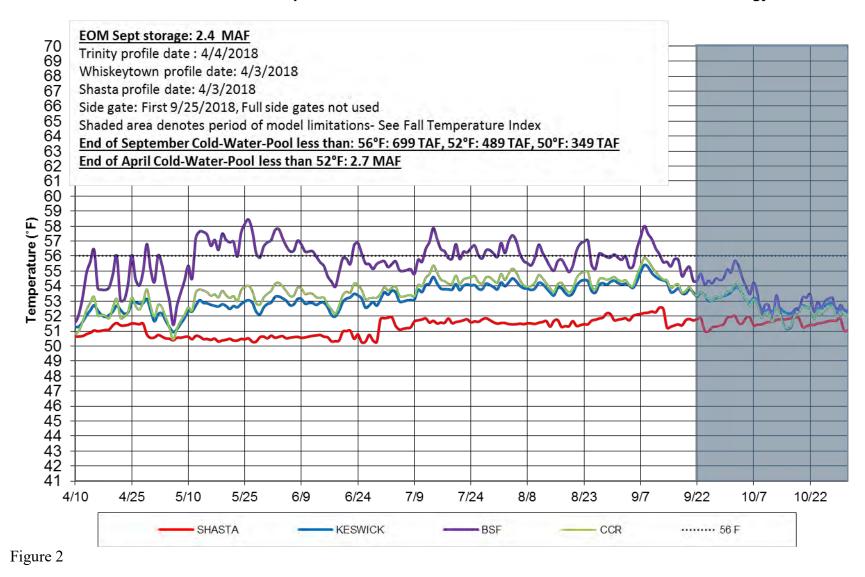
6. Meteorological inputs represent NOAA NWS Climate Prediction Center L3MTO (based on historical 1961 - 2005 monthly mean equilibrium temperature exceedance at 10% and 50% patterned after like months on a 6-hour time-step). Assumed inflow temperature remain static inputs and do not vary with the assumed meteorology. Efforts to extend to more recent years are under way.

7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.

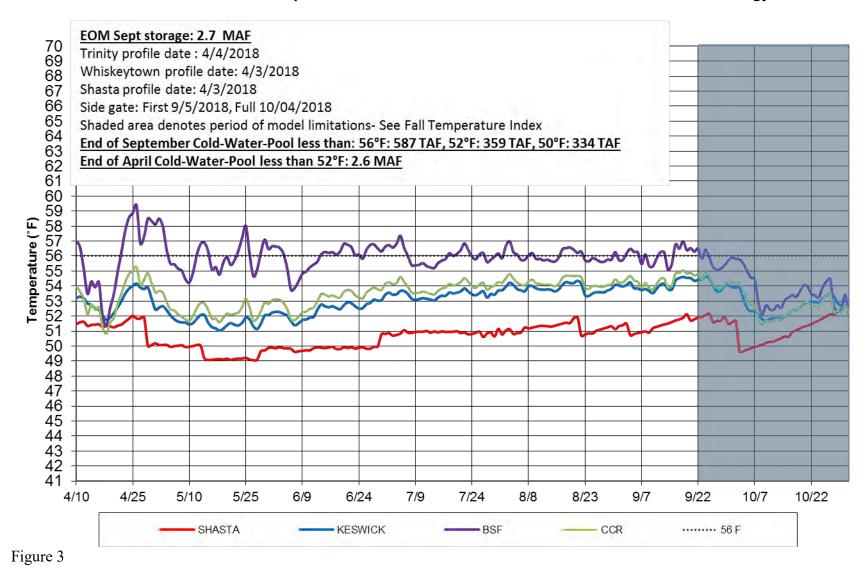
8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway.

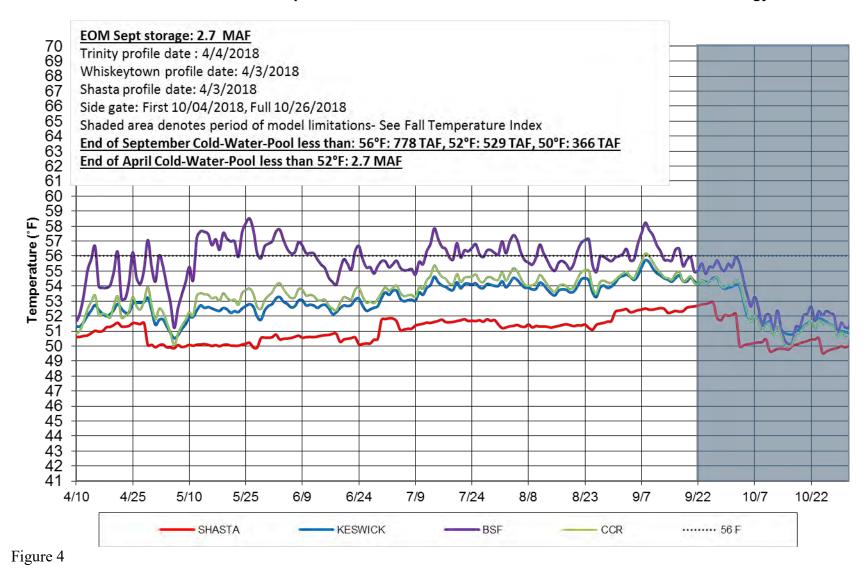

Model Run Date April 16, 2018

Temperature Analysis Results:


Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and meteorology. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1 through 4. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figure 5.

Model Run	End of September	First Side Gate	Full Side Gates	
	Cold Water Pool			
	<56°F (TAF)			
90% Hydro, 10%L3MTOMet	558	9/7	10/5	
90% Hydro, 50% L3MTOMet	699	9/25	NA	
50% Hydro, 10% L3MTOMet	587	9/5	10/4	
50% Hydro, 50% L3MTOMet	778	10/4	10/26	

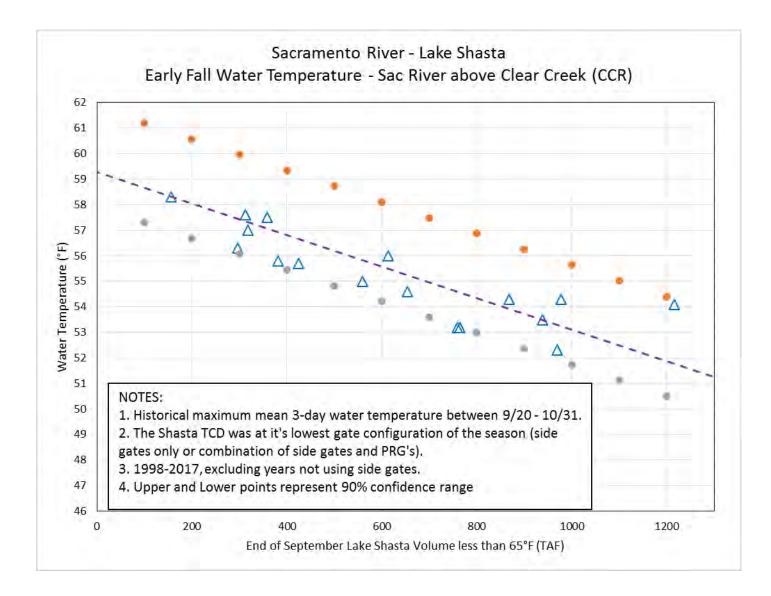

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% L3MTO Meteorology

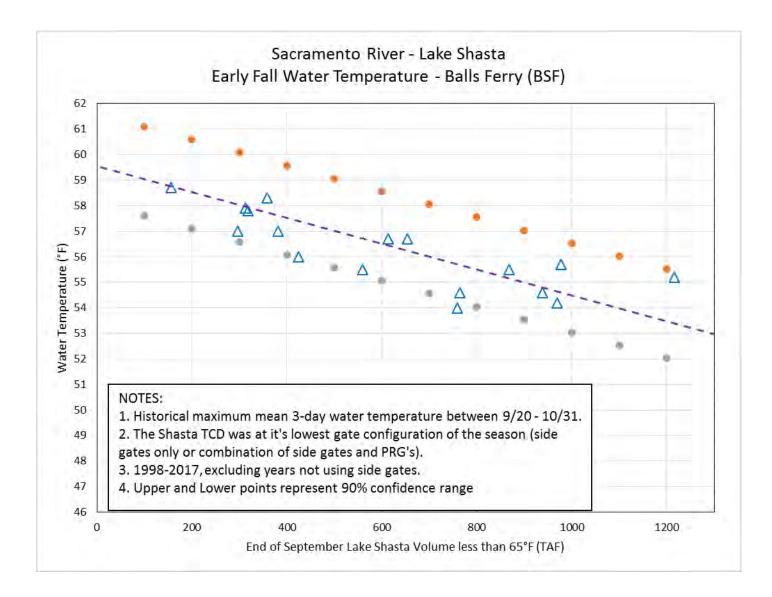

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 50% L3TMO Meteorology

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 10% L3MTO Meteorology

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 50% L3MTO Meteorology


Figure 5 Model Performance and Fall Temperature Index:


1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.


2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 °F downstream based on the end-of-September lake volume less than 56°F; see charts below.

4. Refinement of these estimates and concepts is currently underway.

Enclosure 2

Below are results comparing four USBR scenarios ran April 18th 2018. Scenarios differ by hydrology (Input 50 or 90 percent exceedance) and air temperature (10 or 50 exceedance of L3MTO). Inputs from scenarios are used to generate daily average Sacramento River water temperatures using the RAFT model and associated temperature-dependent egg mortality and survival estimates using the NMFS temperature mortality model (Martin et al. 2017) for the 2018 temperature management season (Table 1 and Figures 2-3). Additionally, a set of mortality model runs were generated using USBR's HEC-5Q model output (Table 2 and Figures 4-5) for comparison purposes, where the RAFT model was not used, but temperatures from the HEC-5Q nodes were linearly interpolated in space.

Further details of modeling methods are at: http://oceanview.pfeg.noaa.gov/CVTEMP/

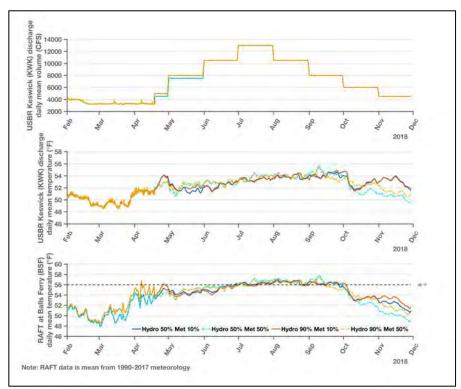


Figure 1: Summary plots showing differences in Keswick discharge volume and temperature, and Balls Ferry RAFT predicted temperature for four scenarios assessed.

Table 1: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution.

Scenario	Mean (%)	Median (%)	Lower (%)	Upper (%)
APR_18_2018_INPUT_50_OUTPUT_50_10L3MTO	32.40	32.60	0.08	70.60
APR_18_2018_INPUT_50_OUTPUT_50_50L3MTO	44.09	48.02	0.08	74.61
APR_18_2018_INPUT_90_OUTPUT_90_10L3MTO	34.58	35.02	0.08	71.40
APR_18_2018_INPUT_90_OUTPUT_90_50L3MTO	38.52	40.64	0.08	73.45

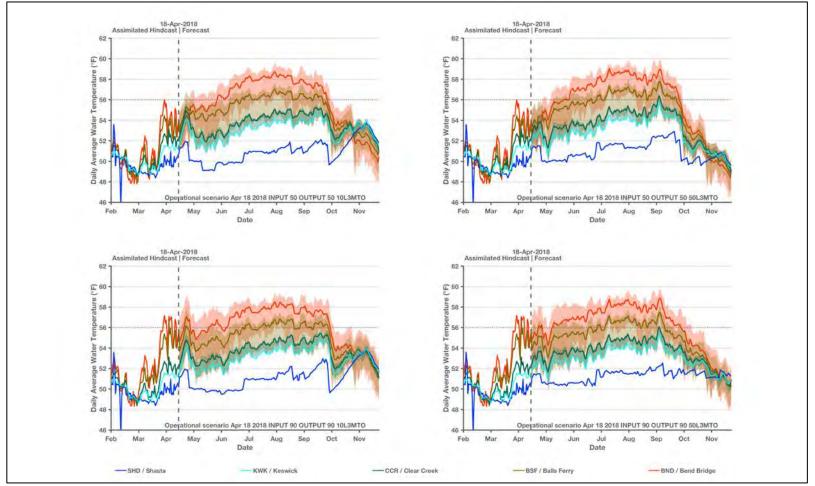


Figure 2: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the four April 18th 2018 scenarios.

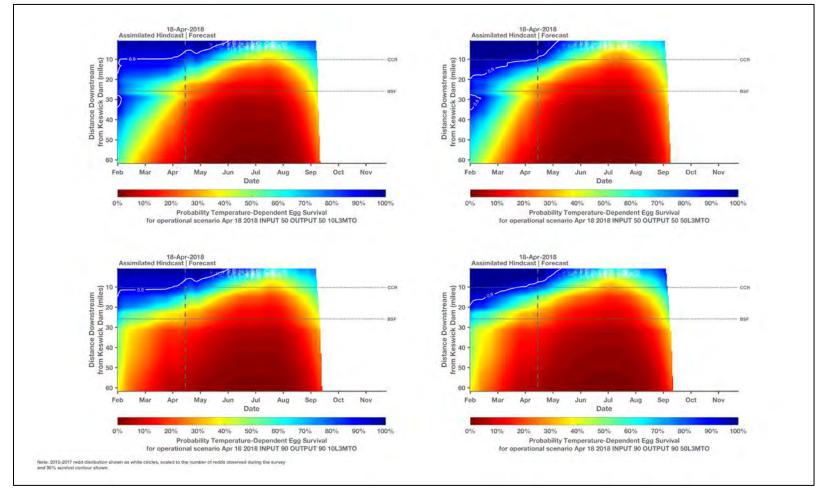


Figure 3: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four April 18th 2018 scenarios.

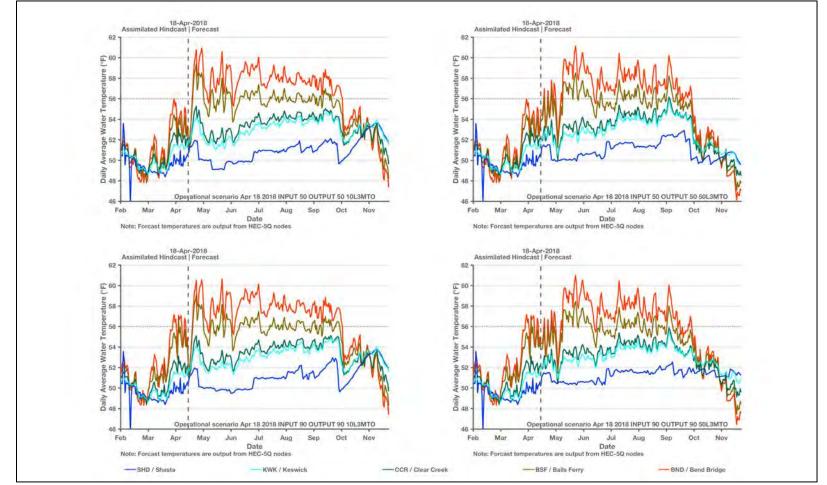


Figure 4: Estimated daily average water temperature produced by scenario input (Shasta, Keswick, Clear Creek, Balls Ferry, and Bend Bridge) under the four April 18th 2018 scenarios using HEC-5Q output.

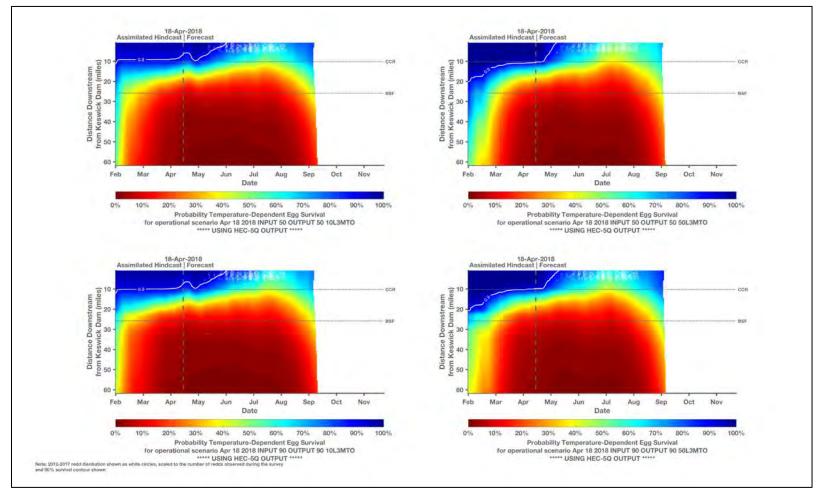


Figure 4: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four April 18th 2018 scenarios using HEC-5Q output. To generate temperatures between HEC-5Q model nodes (KESWICK, CLEAR_CR, BALL_FERRY, JELLYS_FERRY, BEND_BR, and RED_BLIFF) linear interpolation in space was used.

Table 2: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution using HEC-5Q output.

Scenario	Mean (%)	Median (%)	Lower (%)	Upper (%)
APR_18_2018_INPUT_50_OUTPUT_50_10L3MTO	29.03	27.54	0.08	69.12
APR_18_2018_INPUT_50_OUTPUT_50_50L3MTO	40.56	43.04	0.08	73.08
APR_18_2018_INPUT_90_OUTPUT_90_10L3MTO	31.32	30.35	0.08	69.78
APR_18_2018_INPUT_90_OUTPUT_90_50L3MTO	35.19	36.01	0.08	71.55

Reference:

Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T. and Danner, E. M. (2017), Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters 20: 50–59. doi:10.1111/ele.12705

Enclosure 3

Summary of Temperature Results by Month (Monthly Average Temperature °F)								
Initial Compliance Location (°F DAT)	APR	MAY	JUN	JUL	AUG	SEP	OCT	Late Sep- Oct Uncertainty Estimation
April 90%-Exceedance Outlook – 10% Historical Meteorology								
Keswick Dam KWK	52.6	51.2	52.4	53.0	53.2	53.4	52.4	53 - 56
Sac. R. abv Clear Creek CCR	53.1	52.1	53.0	53.5	53.6	53.8	52.5	54 - 57
Balls Ferry BSF	55.9	56.6	56.0	55.6	55.6	55.6	53.7	54 - 58

Upper Sacramento River – April 2018 Preliminary Temperature Analysis Summary of Temperature Results by Month (Monthly Average Temperature °F)

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on April 17, April 4, and April 3 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The April 2018 temperature profile does not yet exhibit conditions for ideal model computations (still nearly isothermal conditions although warming will initiate stratification). The model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project.

2. Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting low creek flows cause significant additional warming in the upper Sacramento River during spring.

3. Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% runoff exceedance studies.

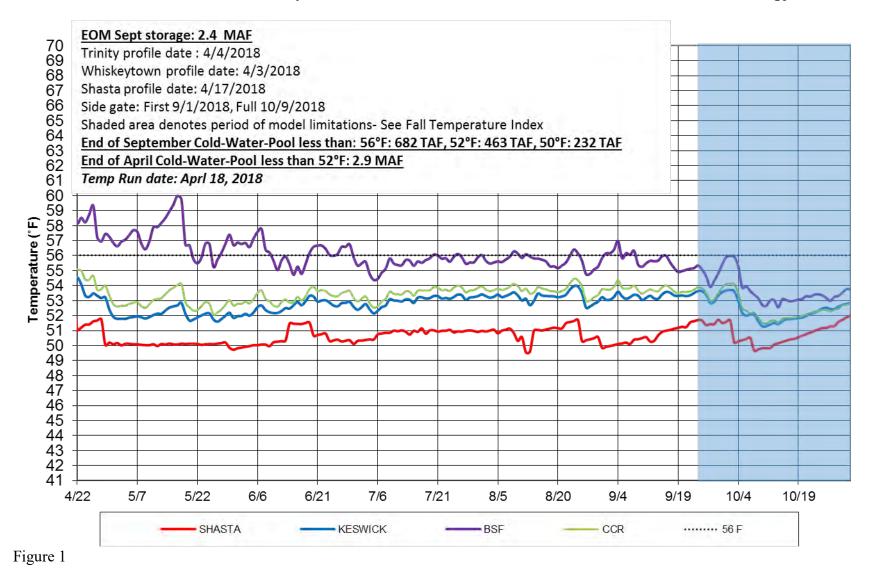
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

6. Meteorological inputs represent NOAA NWS Climate Prediction Center L3MTO (based on historical 1961 – 2005 monthly mean equilibrium temperature exceedance at 10% and 50% patterned after like months on a 6-hour time-step). Assumed inflow temperature remain static inputs and do not vary with the assumed meteorology. Efforts to extend to more recent years are under way.

7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.

8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway.

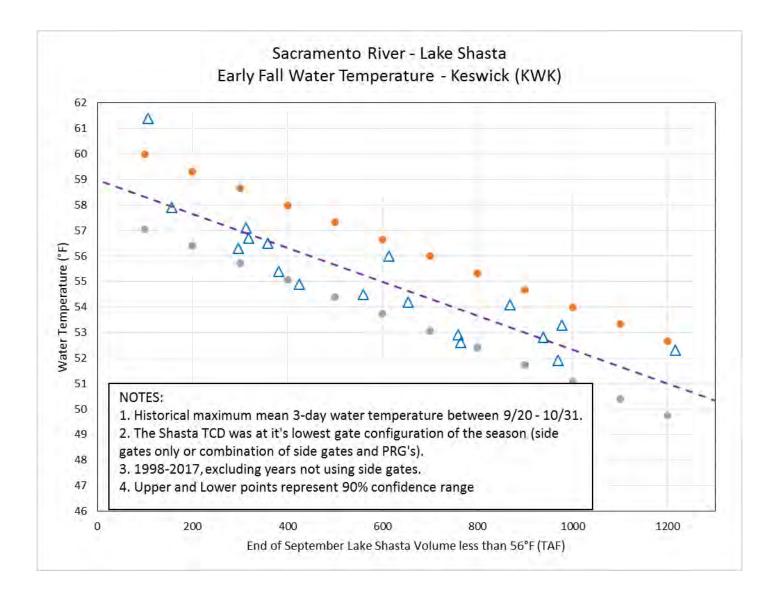

Model Run Date April 18, 2018

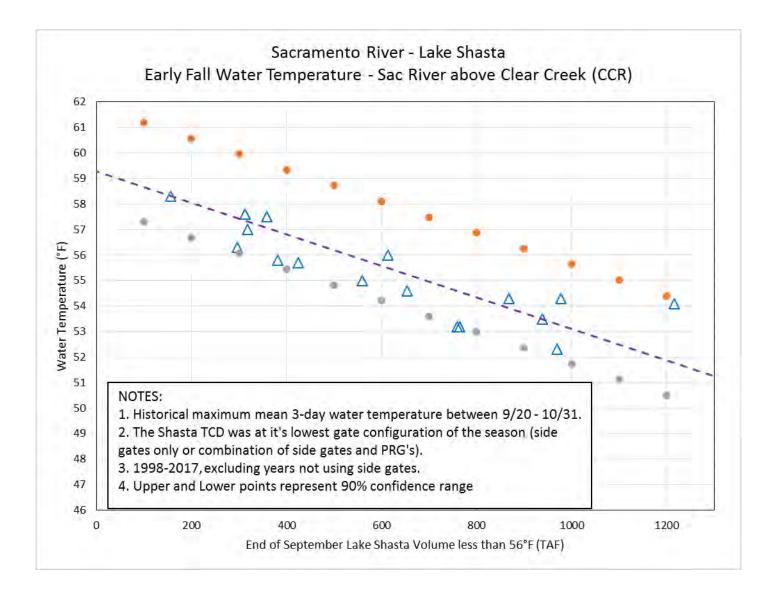
Temperature Analysis Results:

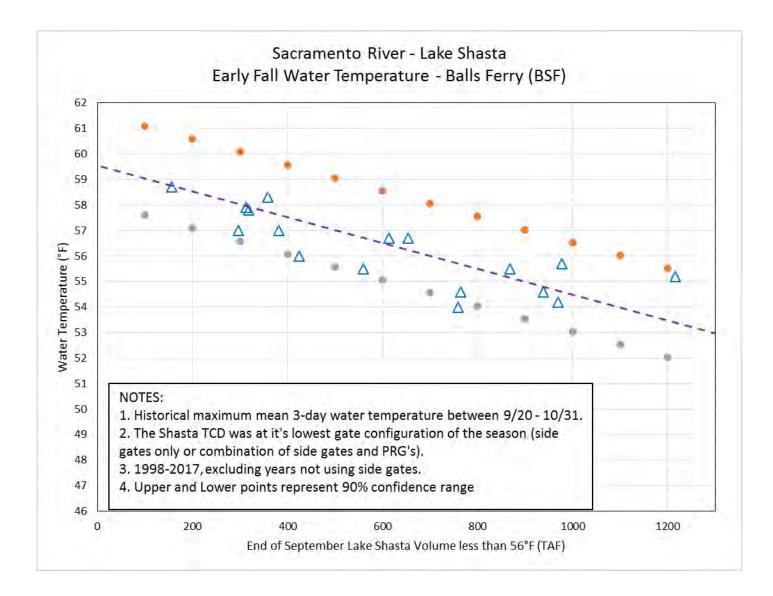
Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and meteorology. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figure 5.

Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
90% Hydro, 10% Historical Met	682	9/1	10/9

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology


Figures Model Performance and Fall Temperature Index:


1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.


2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 $^{\circ}$ F downstream based on the end-of-September lake volume less than 56 $^{\circ}$ F; see charts below.

4. Refinement of these estimates and concepts is currently underway.

Enclosure 4

Upper Sacramento River – April 2018 Preliminary Temperature Analysis Summary of Temperature Results by Month (Monthly Average Temperature °F)

Initial	ARR	MAY	JUN	JUL	AUG	SEP	OCT	Late Sep-
Compliance Location (°F DAT)								Oct
								Uncertainty
								Estimation
A	oril 90%-Ex	xceedance C	Outlook – 109	% Historica	l Meteorolo	gy		
Keswick Dam KWK	52.6	52.0	52.4	53.0	53.1	53.3	52.2	53 - 56
Sac. R. abv Clear Creek CCR	53.1	52.9	53.1	53.5	53.6	53.7	52.3	54 - 58
Balls Ferry BSF	55.9	57.2	56.1	55.5	55.5	55.5	53.6	55 - 58
A	April 90%-Exceedance Outlook – 50% Historical Meteorology							
Keswick Dam KWK	52.5	51.9	52.0	53.0	53.0	53.1	52.0	53 - 56
Sac. R. abv Clear Creek CCR	52.9	52.7	52.6	53.4	53.5	53.5	52.1	54 - 58
Balls Ferry BSF	55.5	56.6	55.5	55.3	55.3	55.2	53.2	55 - 58
A	April 50%-Exceedance Outlook – 10% Historical Meteorology							
Keswick Dam KWK	52.3	51.3	52.0	52.8	53.1	53.3	52.0	53 - 56
Sac. R. abv Clear Creek CCR	52.9	52.1	52.5	53.2	53.4	53.5	52.1	54 - 58
Balls Ferry BSF	55.8	56.7	55.4	55.1	55.2	55.2	53.3	55 - 58
April 50%-Exceedance Outlook – 50% Historical Meteorology								
Keswick Dam KWK	52.2	50.9	52.2	52.8	53.2	53.1	51.8	53 - 56
Sac. R. abv Clear Creek CCR	52.7	51.5	52.6	53.1	53.4	53.3	51.9	53 - 57
Balls Ferry BSF	55.3	55.8	55.3	54.9	55.1	54.9	53.0	54 - 58

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-

September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on April 17, April 4, and April 3 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The April 2018 temperature profile does not yet exhibit conditions for ideal model computations (still nearly isothermal conditions although warming will initiate stratification). The model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project.

Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting low creek flows cause significant additional warming in the upper Sacramento River during spring.
Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% runoff exceedance studies.

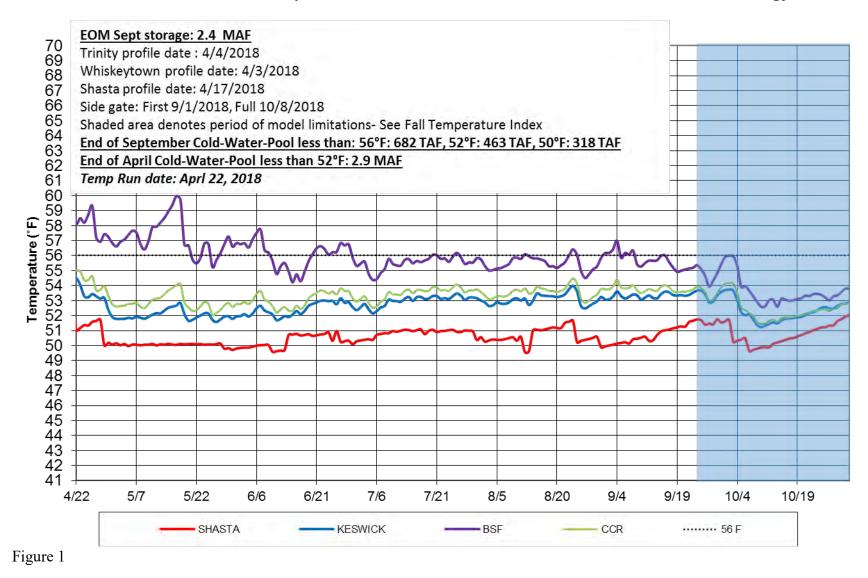
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

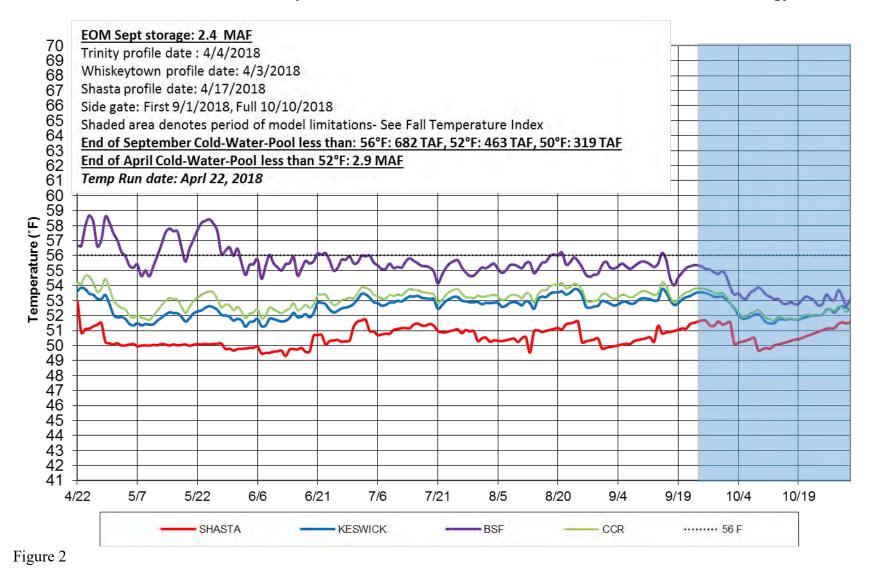
6. Meteorological inputs represent historical (1985 - 2017) monthly mean equilibrium temperature exceedance at 10% and 50% patterned after like months on a 6-hour time-step. Assumed inflow temperature remain static inputs and do not vary with the assumed meteorology.

7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.

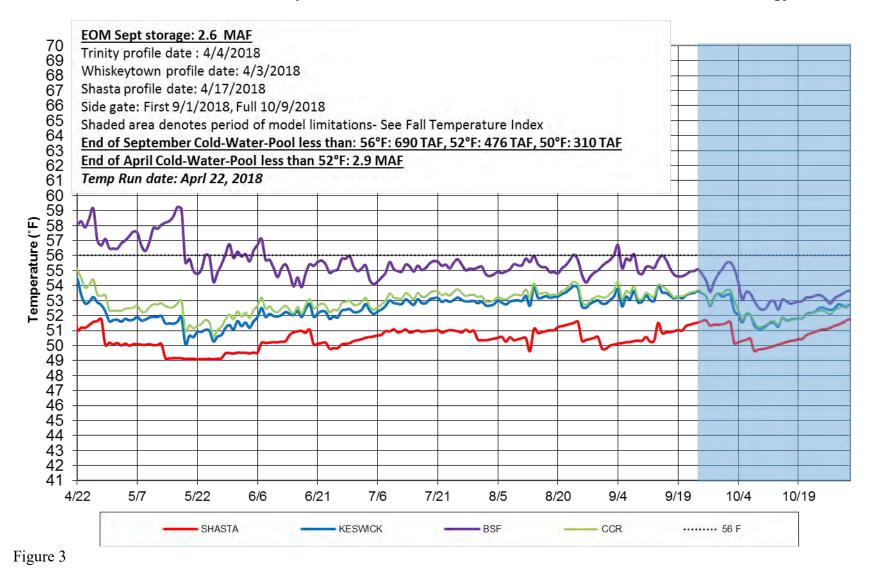
8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway.


Model Run Date April 22, 2018

Temperature Analysis Results:


Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and meteorology. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figures 5-7.

Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
90% Hydro, 10% Historical Met	682	9/1	10/8
90% Hydro, 50% Historical Met	682	9/1	10/10
50% Hydro, 10% Historical Met	690	9/1	10/9
50% Hydro, 50% Historical Met	725	9/3	10/12


Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 50% Historical Meteorology

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 10% Historical Meteorology

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 50% Historical Meteorology

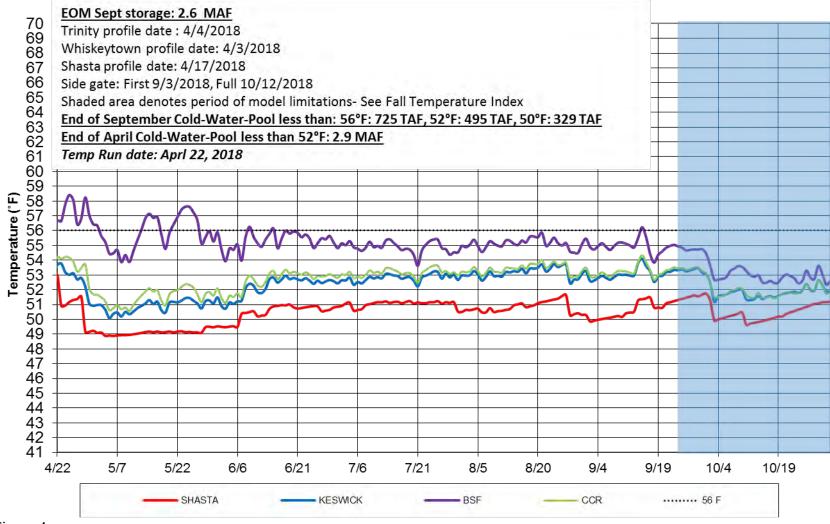


Figure 4

Figures 5-7 Model Performance and Fall Temperature Index:

1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.

2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 °F downstream based on the end-of-September lake volume less than 56°F; see charts below.

4. Refinement of these estimates and concepts is currently underway.

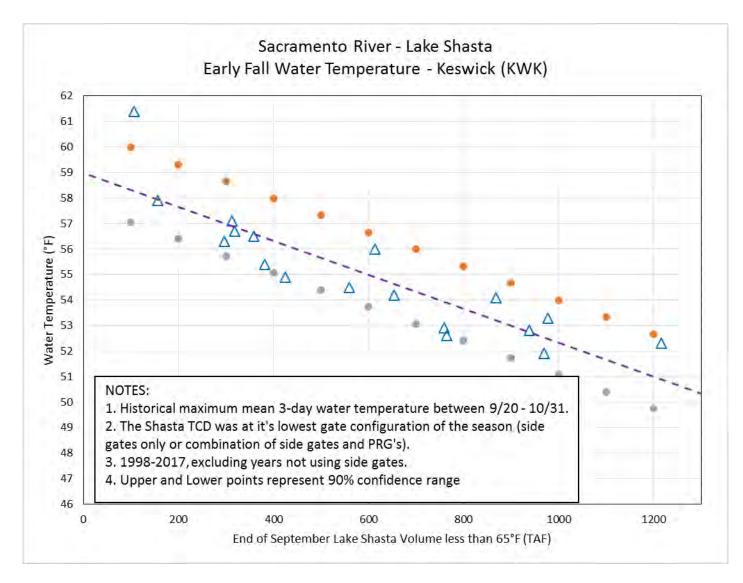


Figure 5

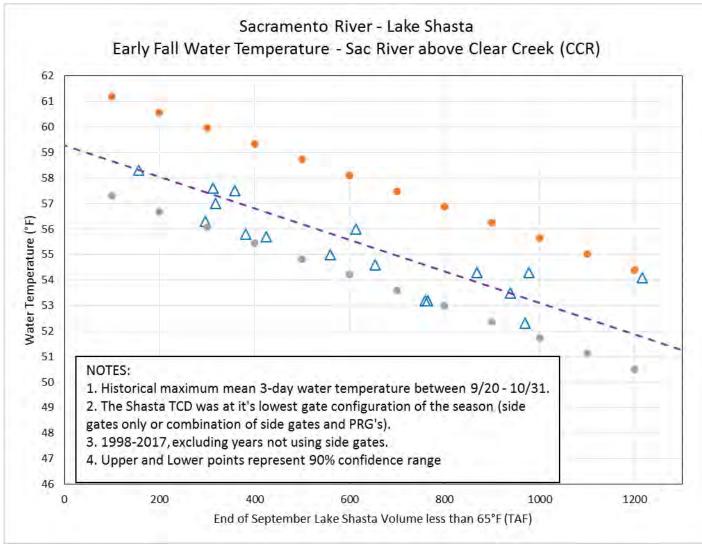
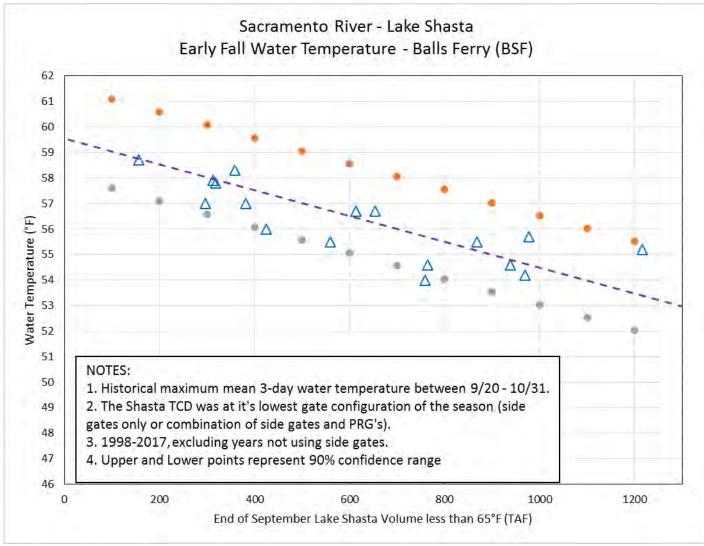



Figure 6

Initial Compliance Location (°F DAT)	ARR	МАҮ	JUN	JUL	AUG	SEP	OCT	Late Sep- Oct Uncertainty Estimation
April 90%-Exceedance Outlook – 10% Historical Meteorology								
Keswick Dam KWK	52.6	52.0	52.4	52.5	52.4	52.6	53.1	54 - 56
Sac. R. abv Clear Creek CCR	53.1	52.9	53.0	53.0	52.9	53.0	53.2	54 - 58
Balls Ferry BSF	55.9	57.2	56.0	55.1	54.9	54.9	54.3	55 - 58

Upper Sacramento River – April 2018 Preliminary Temperature Analysis Summary of Temperature Results by Month (Monthly Average Temperature °F)

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on April 17, April 4, and April 3 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The April 2018 temperature profile does not yet exhibit conditions for ideal model computations (still nearly isothermal conditions although warming will initiate stratification). The model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project.

 Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting low creek flows cause significant additional warming in the upper Sacramento River during spring.
Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% runoff exceedance studies.

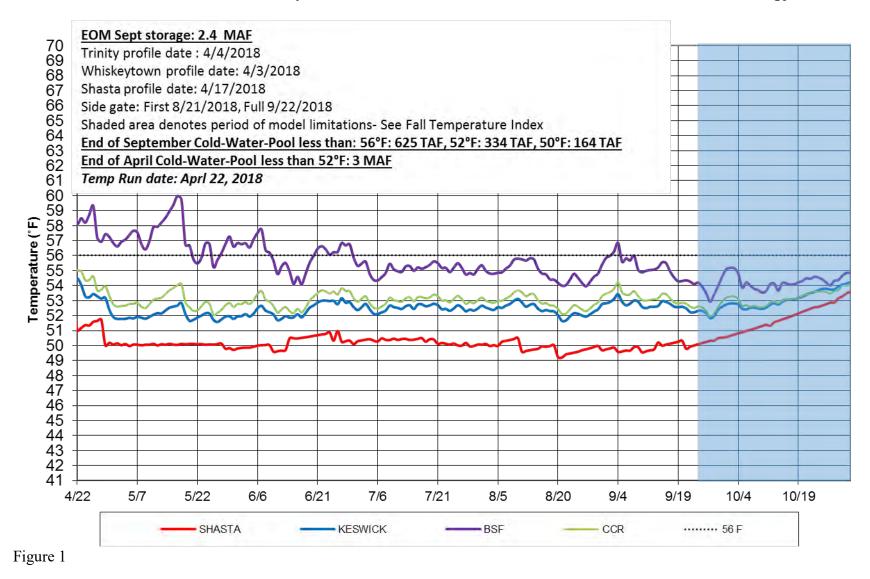
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

6. Meteorological inputs represent historical (1985 - 2017) monthly mean equilibrium temperature exceedance at 10% and 50% patterned after like months on a 6-hour time-step. Assumed inflow temperature remain static inputs and do not vary with the assumed meteorology.

7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.

8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway.


Model Run Date April 22, 2018

Temperature Analysis Results:

Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and meteorology. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figures 2-4.

Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
90% Hydro, 10% Historical Met	625	8/21	9/22

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology

Figures 2-4 Model Performance and Fall Temperature Index:

1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.

2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 $^{\circ}$ F downstream based on the end-of-September lake volume less than 56 $^{\circ}$ F; see charts below.

4. Refinement of these estimates and concepts is currently underway.

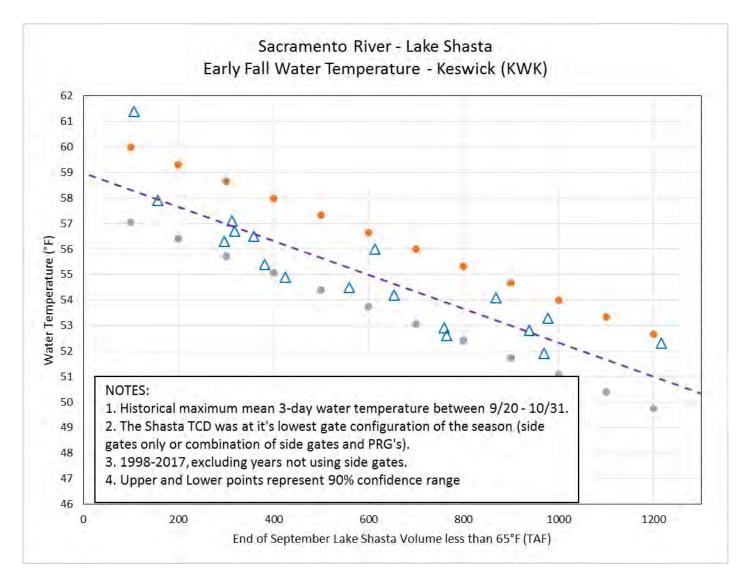


Figure 2

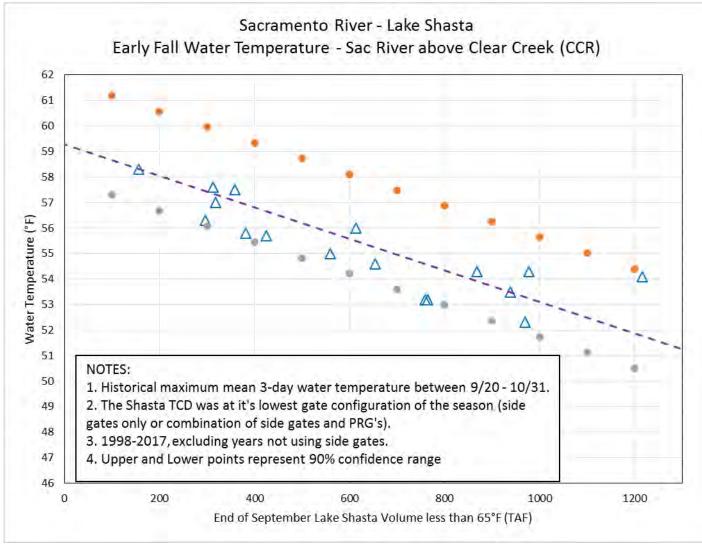


Figure 3

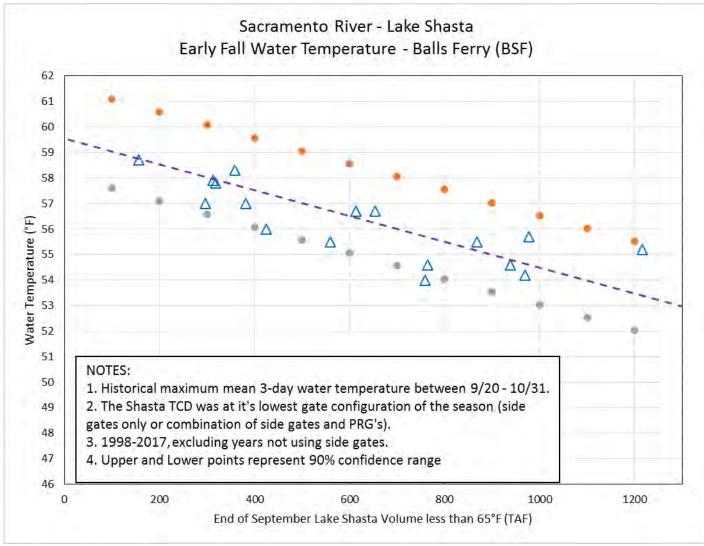


Figure 4

Enclosure 5

Below are results comparing five USBR scenarios ran Apr 26th 2018. Scenarios differ by hydrology (Input 50 or 90 percent exceedance) and air temperature (10 or 50 exceedance of L3MTO), with one scenario (ending of CCR) targeting temperature compliance at CCR rather than BSF (all others). A set of mortality model runs were generated using USBR's HEC-5Q model output (Table 1 and Figures 4-5) where temperatures from the HEC-5Q nodes were linearly interpolated in space.

Further details of modeling methods are at: http://oceanview.pfeg.noaa.gov/CVTEMP/

Table 1: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution using HEC-5Q output.

Scenario	Mean (%)	Median (%)	Lower (%)	Upper (%)
APR_26_2018_INPUT_50_OUTPUT_50_10L3MTO	10.38	3.15	0.08	55.02
APR_26_2018_INPUT_50_OUTPUT_50_50L3MTO	9.44	2.02	0.08	54.16
APR_26_2018_INPUT_90_OUTPUT_90_10L3MTO	11.88	3.08	0.08	58.41
APR_26_2018_INPUT_90_OUTPUT_90_50L3MTO	9.77	2.07	0.08	55.01
APR_26_2018_INPUT_90_OUTPUT_90_10L3MTO_CCR	5.16	0.27	0.08	44.30

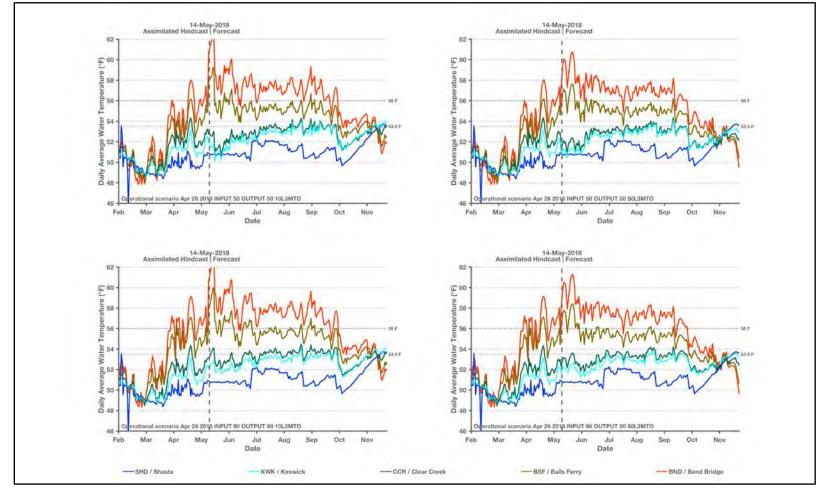


Figure 2: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the four Apr 26th 2018 scenarios using HEC-5Q output.

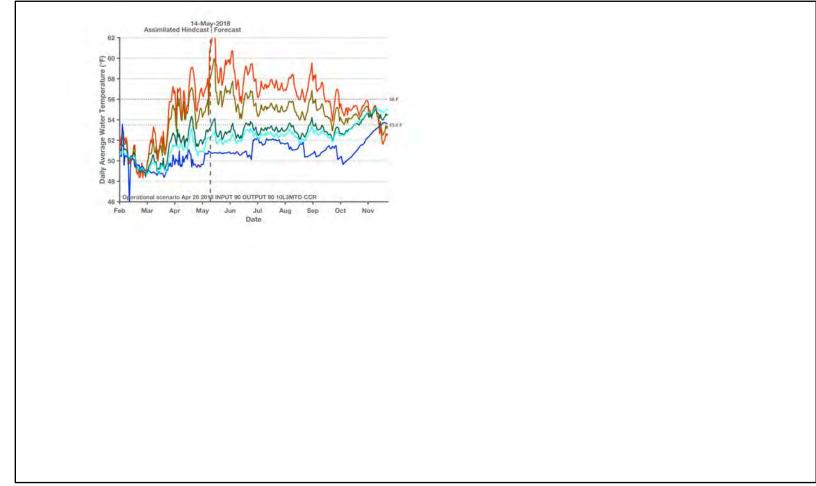


Figure 3: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the one April 26th 2018 scenario targeting CCR using HEC-5Q output.

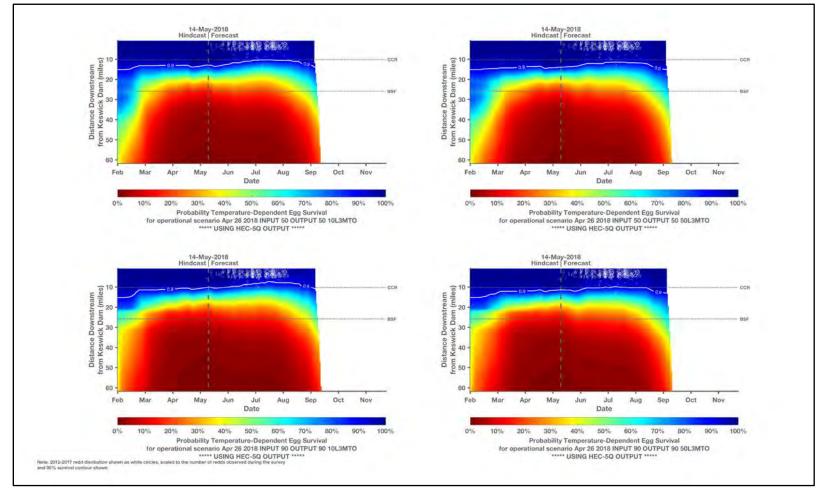


Figure 3: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four April 26th 2018 scenarios using HEC-5Q output.

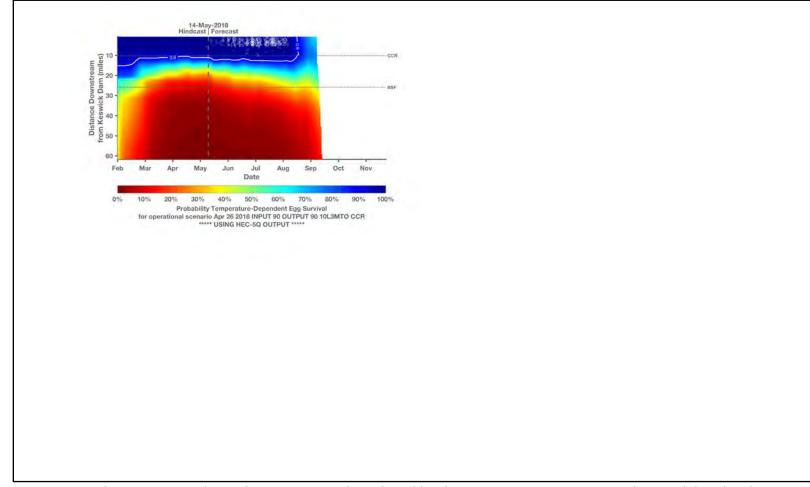


Figure 3: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the one April 26th 2018 scenario targeting CCR using HEC-5Q output.

Reference:

Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T. and Danner, E. M. (2017), Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters 20: 50–59. doi:10.1111/ele.12705

Enclosure 6

Upper Sacramento River – April 2018 Preliminary Temperature Analysis Summary of Temperature Results by Month (Monthly Average Temperature °F)

Location	MAY	JUN	JUL	AUG	SEP	OCT	Late Sep- Oct Uncertainty Estimation
April 90%-E	xceedance O	utlook – 10%	6 Historical	Meteorolog	gy 53.5°F (CCR	
Keswick Dam KWK	52.8	52.9	53.0	52.9	53.1	52.9	54 - 57
Sac. R. abv Clear Creek CCR	53.5	53.5	53.5	53.4	53.5	53.0	54 - 58
Balls Ferry BSF	57.2	56.5	55.5	55.3	55.3	54.1	55 - 59
April 50%-E	xceedance O	utlook – 10%	% Historical	Meteorolog	gy 53.5°F (CCR	
Keswick Dam KWK	52.8	52.9	53.0	52.9	53.1	52.9	54 - 57
Sac. R. abv Clear Creek CCR	53.5	53.5	53.5	53.4	53.5	52.9	54 - 58
Balls Ferry BSF	57.4	56.4	55.6	55.3	55.3	54.1	55 - 59
April 90%-Exceedance O	utlook – 10%	6 Historical 1	Meteorology	53°F CCR	(May) 56°	°F BSF (Ju	in-Oct)
Keswick Dam KWK	52.8	52.4	53.5	53.6	53.5	52.3	54 - 56
Sac. R. abv Clear Creek CCR	53.5	53.0	54.0	54.1	53.9	52.4	54 - 58
Balls Ferry BSF	57.2	56.0	56.0	56.0	55.6	53.6	55 - 58
April 50%-Exceedance Outlook – 10% Historical Meteorology 53°F CCR (May) 56°F BSF (Jun-Oct)							
Keswick Dam KWK	52.8	52.3	53.5	53.6	53.6	52.3	53 - 56
Sac. R. abv Clear Creek CCR	53.5	52.9	54.0	54.1	54.0	52.4	54 - 57
Balls Ferry BSF	57.3	56.0	56.0	56.0	55.8	53.6	55 - 58

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has

historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on May 1, May 3, and May 2 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project.
Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are

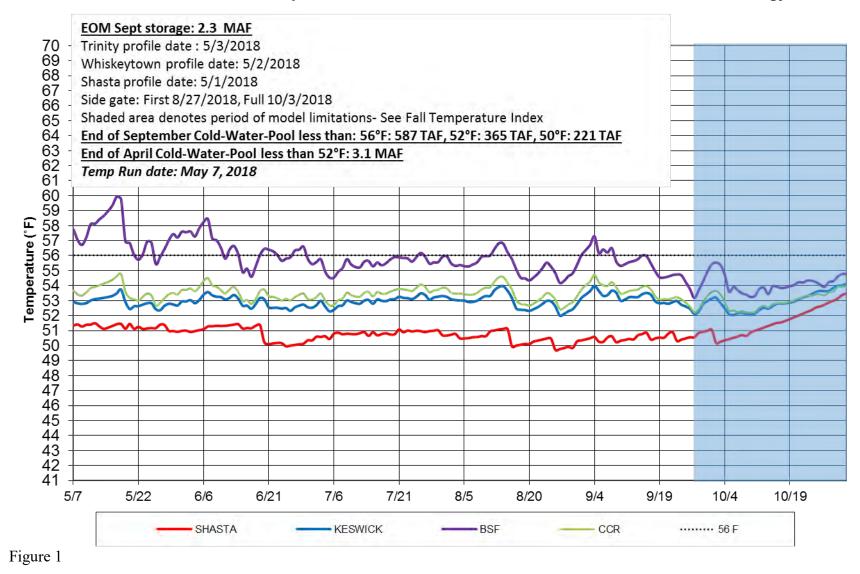
not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used for all model runs. The resulting low creek flows can cause significant additional warming in the upper Sacramento River during spring.

3. Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 90% runoff exceedance for the 90% runoff exceedance studies. The April 2018 Operation Outlook is modified to adjust for real-time operations in early May suggesting the monthly Keswick release may average closer to 8,500 cfs.

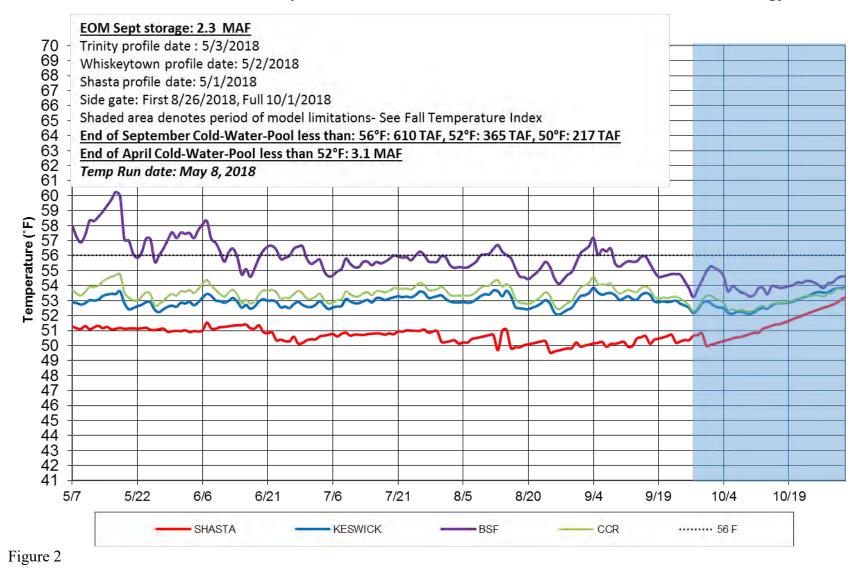
4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

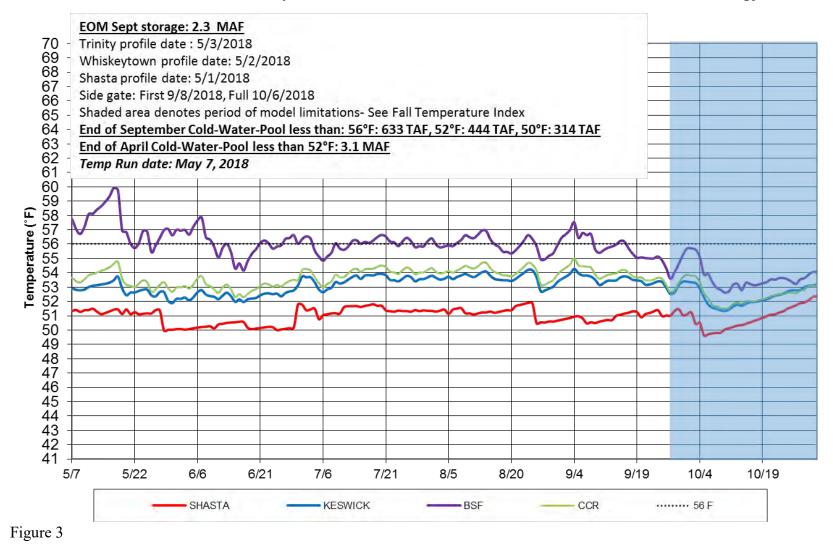
6. Meteorological inputs represent historical (1985 - 2017) monthly mean equilibrium temperature exceedance at 10% and 50% patterned after like months on a 6-hour time-step, or as noted. Assumed inflow temperature remain static inputs and do not vary with the assumed meteorology.

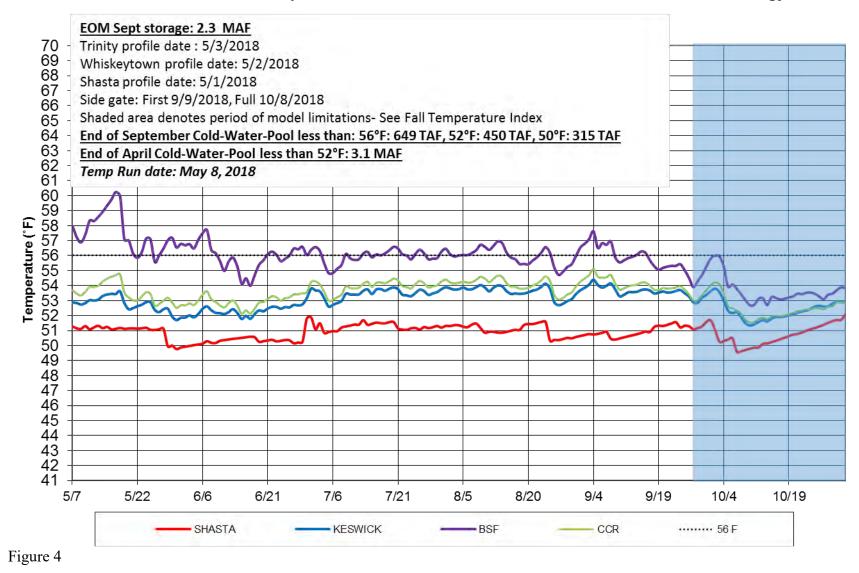

 Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.
Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway. Model Run Date May 7-8, 2018

Temperature Analysis Results:


Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and temperature compliance target location and temperature. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1-4. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figures 5-7.

Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
(1) 90% Hydro, 10% Historical Met 53.5 CCR	587	8/27	10/3
(2) 50% Hydro, 10% Historical Met 53.5 CCR	610	8/26	10/1
(3) 90% Hydro, 10% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	633	9/8	10/6
(4) 50% Hydro, 10% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	649	9/9	10/8


Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology


Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 10% Historical Meteorology

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 10% Historical Meteorology

Figures 5-7 Model Performance and Fall Temperature Index:

1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates.

2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 °F downstream based on the end-of-September lake volume less than 56°F; see charts below.

4. Refinement of these estimates and concepts is currently underway.

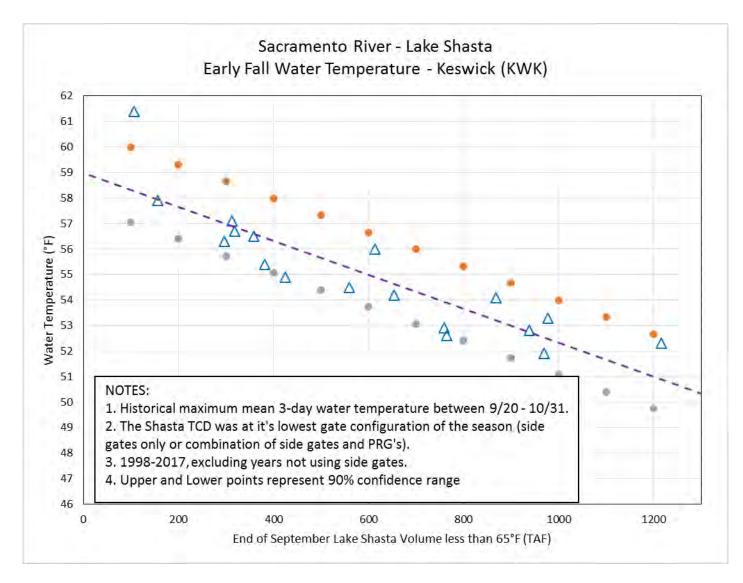


Figure 5

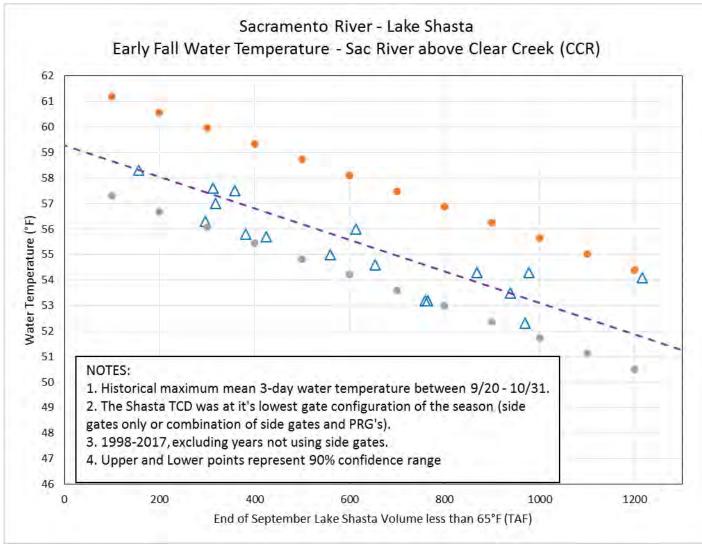
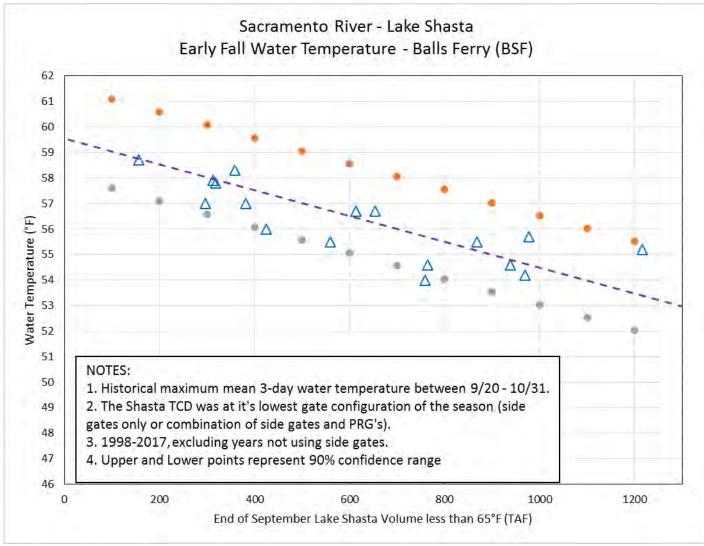



Figure 6

Enclosure 7

Below are results comparing four USBR scenarios ran May 8th 2018. Scenarios differ by hydrology (Input 50 or 90 percent exceedance) and temperature target strategies (53.5 F at CCR for the entire season, or 53 at CCR in May followed by 56 at BSF from June to October), with air temperature at 10 exceedances of L3MTO. Inputs from scenarios are used to generate daily average Sacramento River water temperatures using the RAFT model and associated temperature-dependent egg mortality and survival estimates using the NMFS temperature mortality model (Martin et al. 2017) for the 2018 temperature management season (Table 1 and Figures 2-3). Additionally, a set of mortality model runs were generated using USBR's HEC-5Q model output (Table 2 and Figures 4-5) for comparison purposes, where the RAFT model was not used, but temperatures from the HEC-5Q nodes were linearly interpolated in space.

Further details of modeling methods are at: http://oceanview.pfeg.noaa.gov/CVTEMP/

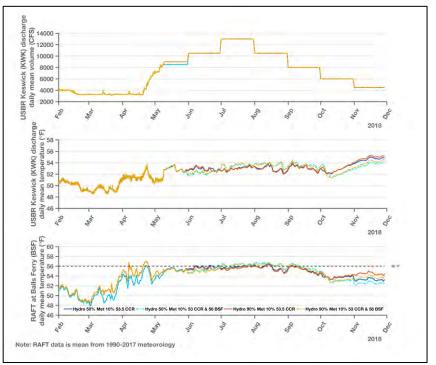


Figure 1: Summary plots showing differences in Keswick discharge volume and temperature, and Balls Ferry RAFT predicted temperature for four scenarios assessed.

Table 1: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution.

Scenario	Mean (%)	Median (%)	Lower (%)	Upper (%)
MAY_08_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR	11.95	3.63	0.08	58.78
MAY_08_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR_56_BSF	25.24	22.49	0.08	67.56
MAY_08_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR	12.49	4.84	0.08	58.64
MAY_08_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR_56_BSF	24.37	21.12	0.08	67.02

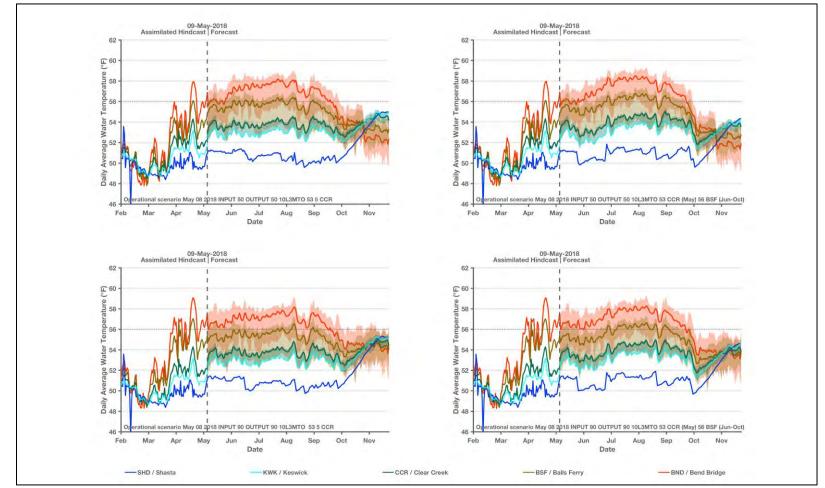


Figure 2: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the four May 8th 2018 scenarios.

Summary Document for Shasta/Keswick Operational Scenarios Prepared by the Southwest Fisheries Science Center on May 9th, 2018

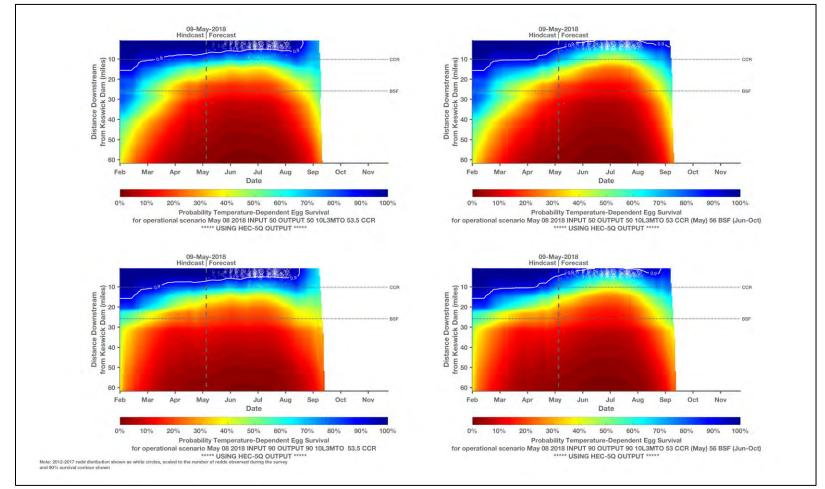


Figure 3: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 8th 2018 scenarios.

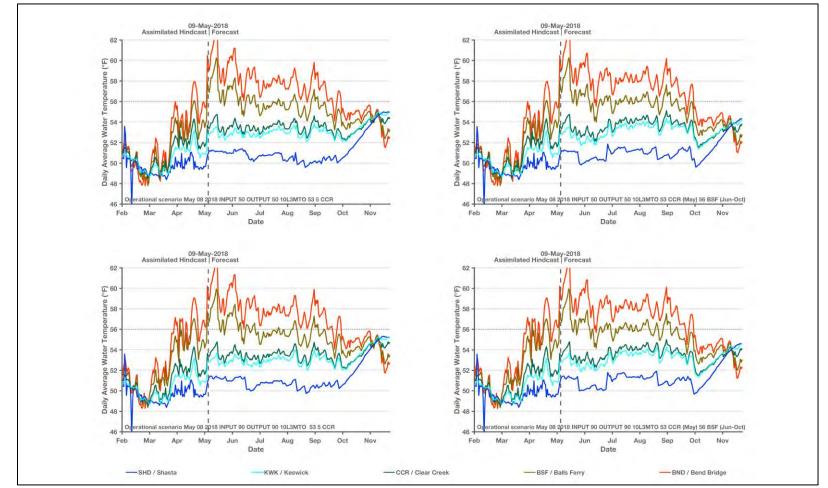


Figure 4: Estimated daily average water temperature produced by scenario input (Shasta, Keswick, Clear Creek, Balls Ferry, and Bend Bridge) under the four May 8th 2018 scenarios using HEC-5Q output.

Summary Document for Shasta/Keswick Operational Scenarios Prepared by the Southwest Fisheries Science Center on May 9th, 2018

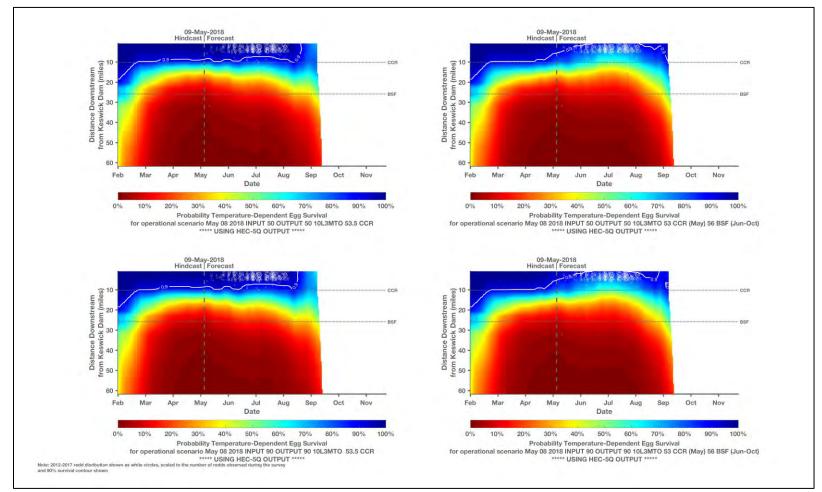


Figure 4: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 8th 2018 scenarios using HEC-5Q output. To generate temperatures between HEC-5Q model nodes (KESWICK, CLEAR_CR, BALL_FERRY, JELLYS_FERRY, BEND_BR, and RED_BLIFF) linear interpolation in space was used.

Summary Document for Shasta/Keswick Operational Scenarios Prepared by the Southwest Fisheries Science Center on May 9th, 2018

Table 2: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution using HEC-5Q output.

Scenario	Mean (%)	Median (%)	Lower (%)	Upper (%)
MAY_08_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR	10.90	2.94	0.08	56.61
MAY_08_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR_56_BSF	23.11	19.24	0.08	65.92
MAY_08_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR	11.46	4.16	0.08	56.47
MAY_08_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR_56_BSF	22.3	17.9	0.08	65.35

Reference:

Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T. and Danner, E. M. (2017), Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters 20: 50–59. doi:10.1111/ele.12705

Enclosure 8

Storages

Federal End of the Month Stora	ge/Elevation (TAF/Feet)
--------------------------------	-------------------------

		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Trinity	1844	1964	1893	1782	1679	1555	1439	1409	1390	1400	1432	1518	1615
	Elev.	2338	2333	2325	2318	2308	2298	2295	2294	2295	2297	2305	2313
Whiskeytown	207	238	238	238	238	238	230	206	206	206	206	206	206
	Elev.	1209	1209	1209	1209	1209	1207	1199	1199	1199	1199	1199	1199
Shasta	3880	4132	3981	3625	3046	2600	2320	2196	2190	2321	2518	2865	3321
	Elev.	1052	1047	1034	1010	989	975	968	968	975	985	1002	1021
Folsom	817	793	904	825	591	449	402	345	296	256	306	412	576
	Elev.	449	459	452	427	410	403	395	386	379	388	405	426
New Melones	2019	1977	1946	1922	1848	1784	1740	1709	1721	1735	1747	1770	1789
	Elev.	1050	1047	1045	1038	1032	1028	1025	1026	1027	1028	1031	1033
San Luis	876	773	574	266	88	8	72	198	382	526	666	699	762
	Elev.	510	485	445	421	399	414	431	451	476	491	493	505
Total		9877	9536	8658	7491	6634	6204	6063	6185	6443	6874	7470	8268

State End of the Month Reservoir Storage (TAF)

Oroville													
San Luis													
Total San													
Luis (TAF)	1774	1622	1335	919	697	518	638	791	986	1245	1411	1422	1565

Monthly River Releases (TAF/cfs)

Trinity	TAF	36	92	47	28	53	52	23	18	18	18	17	18
- 65	cfs	600	1,498	783	450	857	870	373	300	300	300	300	300
Clear Creek	TAF	13	13	17	9	9	9	12	12	12	12	11	12
i resort	cfs	218	216	288	150	150	150	200	200	200	200	200	200
Sacramento	TAF	297	523	625	799	645	476	369	268	200	200	180	200
3 10 - 500 1	cfs	5000	8500	10500	13000	10500	8000	6000	4500	3250	3250	3250	3250
American	TAF	506	77	167	293	204	107	92	89	92	61	56	77
	cfs	8500	1250	2811	4768	3311	1798	1500	1500	1500	1000	1005	1250
Stanislaus	TAF	83	96	56	18	18	18	49	12	12	14	13	12
	cfs	1400	1555	940	300	300	300	797	200	200	232	236	200
Feather													
	cfs												

Trinity Diversions (TAF)

-	. ,	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Carr PP		39	67	85	80	71	62	16	21	12	3	2	15
Spring Crk. PP		10	60	70	70	60	60	30	15	12	10	20	30
Delta Summary	(TAF)	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	lan	[ab	No
		- Apr	intery	oun	541	Aug	Jeh	OCI	NUV	Dec	Jan	Feb	Mar
Tracy		93	61	53	225	260	262	265	250	190	190	120	200
USBR Banks		0	0	0	18	18	18	0	0	0	0	0	0
Contra Costa		12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0	14.0	12.7
Total USBR		106	74	63	254	291	294	282	268	208	204	134	213
State Export	÷	1.5.5			201	201	204	202	200	200	204	134	213
Total Export		182	105	110	375	355	444	433	374	394	394	261	413
COA Balance		25	25	0	0	0	87	87	87	87	87	46	46
Old/Middle River Std.	Т	T.							1				
Old/Middle R. calc.		-164	146	-1,354	-4,912	-4,693	-5,945	-5,221	-4,877	-4,978	-4,960	-3,536	-5,040
Computed DOI	T	30476	10004	7900	6507	4002	3009	4067	4572	6767	9728	11400	12379
Excess Outflow		19079	2098	0	0	0	0000	65	67	2261	3725	0	976
% Export/Inflow		8%	11%	13%	35%	40%	54%	54%	52%	47%	41%	29%	34%
% Export/Inflow std.		35%	35%	35%	65%	65%	65%	65%	65%	65%	65%	45%	35%

Hydrology

	Trinity	Shasta	Folsom	New Melones	
Water Year Inflow (TAF)	627	3,621	2,352	972	
Year to Date + Forecasted % of mean	52%	65%	86%	92%	

CVP actual operations do not follow any forecasted operation or outlook; actual operations are based on real-time conditions. CVP operational forecasts or outlooks represent general system-wide dynamics and do not necessarily address specific watershed/tributary details. CVP releases or export values represent monthly averages. CVP Operations are updated monthly as new hydrology information is made available December through May.

Storages

		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Trinity	1844	1878	1860	1773	1659	1514	1381	1343	1330	1360	1425	1535	1629
	Elev.	2332	2331	2325	2316	2304	2293	2290	2288	2291	2297	2306	2314
Whiskeytown	207	238	238	238	238	238	230	206	206	206	206	206	206
	Elev.	1209	1209	1209	1209	1209	1207	1199	1199	1199	1199	1199	1199
Shasta	3880	4167	4055	3739	3205	2813	2586	2491	2541	2731	3138	3622	4179
	Elev.	1054	1050	1038	1017	999	989	984	986	995	1014	1033	1054
Foisom	817	813	937	885	715	604	528	480	451	439	468	521	586
	Elev.	451	462	458	441	429	420	414	410	409	412	419	427
New Melones	2019	1996	2014	2018	1958	1894	1853	1812	1829	1852	1884	1938	1915
	Elev.	1052	1054	1054	1048	1043	1039	1035	1036	1039	1042	1047	1044
San Luis	876	816	594	341	152	54	106	224	396	604	748	865	937
	Elev.	508	471	418	387	372	409	443	469	498	491	498	503
Total		9908	9698	8994	7927	7117	6684	6556	6752	7192	7868	8687	9452

Federal End of the Month Storage/Elevation (TAF/Feet)

State End of the Month Reservoir Storage (TAF)

Oroville													
San Luis Total San Luis (TAF)	1774	1596	1186	676	421	317	598	004	4464	1400	4400	4.107	
		1000	1100	0/0	741	J1/	090	904	1164	1488	1406	1487	1540

Monthly River Releases (TAF/cfs)

Trinity	TAF	36	92	47	28	53	52	23	18	18	18	17	18
	cfs	600	1,498	783	450	857	870	373	300	300	300	300	300
Clear Creek	TAF	13	13	17	9	9	9	12	12	12	15	11	12
	cfs	218	216	288	150	150	150	200	200	200	240	200	200
Sacramento	TAF	268	523	625	799	645	476	369	268	200	200	278	307
	cfs	4500	8500	10500	13000	10500	8000	6000	4500	3250	3250	5000	5000
American	TAF	535	154	188	249	184	149	123	119	123	123	208	246
	cfs	9000	2500	3158	4053	3000	2500	2000	2000	2000	2000	3750	4000
Stanislaus	TAF	86	96	56	18	18	18	49	12	12	14	13	93
	cfs	1454	1555	940	300	300	300	797	200	200	232	236	1521
Feather												200	1021

Trinity Diversions (TAF)

	(,	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Carr PP		35	24	71	84	85	76	26	25	9	0	.2	35
Spring Crk. PP	1.1	15	25	60	75	75	75	40	20	12	20	35	60
Delta Summary (1	AF)	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Tracy		113	74	155	273	274	260	265	245	260	205	215	221
USBR Banks		0	0	0	24	24	200	200	243	200	205	215	221
Contra Costa		12.7	12.7	9.8	11.1	12.7	14.0	16.8	18.4	18.3	14.0	14.0	12.7
Total USBR	- 1	126	86	165	308	311	298	282	263	278	219	229	234
State Export				100	000		200	202	205	2/0	219	225	234
Total Export		231	105	182	528	589	694	686	531	538	269	444	421
COA Balance		25	25	0	0	0	0	0	0	0	0	0	421
Old/Middle River Std.				i-									l,
Old/Middle R. calc.		-494	281	-1,960	-6,594	-7,419	-8,991	-8,251	-6,720	-6,577	-3,086	-4,826	-3,440
Computed DOI	-	36611	13892	7900	6507	4018	3026	4018	4522	8085	17325	23701	25588
Excess Outflow		25214	4945	0	0	16	17	16	17	3579	11322	12301	14185
% Export/Inflow		9%	9%	21%	44%	54%	66%	65%	61%	51%	20%	25%	21%
% Export/Inflow std.		35%	35%	35%	65%	65%	65%	65%	65%	65%	65%	45%	35%

Hydrology

	Trinity	Shasta	Folsom	New Melones	
Water Year Inflow (TAF)	539	3,864	2,586	1080	
Year to Date + Forecasted % of mean	45%	70%	95%	102%	

CVP actual operations do not follow any forecasted operation or outlook; actual operations are based on real-time conditions. CVP operational forecasts or outlooks represent general system-wide dynamics and do not necessarily address specific watershed/tributary details. CVP releases or export values represent monthly averages. CVP Operations are updated monthly as new hydrology information is made available December through May.

May 10, 2018

Upper Sacramento River – April 2018 Preliminary Temperature Analysis

Summary of Temperature Results by Month (Monthly Average Temperature ^oF)

						100	Uncertainty Estimation
April 90%-F	April 90%-Exceedance Outlook - 10% Historical Meteorology 53.5°F CCR	utlook – 10%	6 Historical	Meteorolog	gy 53.5°F C	CCR	
Keswick Dam KWK	52.8	52.9	53.0	52.9	53.1	52.9	54 - 57
Sac. R. abv Clear Creek CCR	53.5	53.5	53.5	53.4	53.5	53.0	54 - 58
Balls Ferry BSF	57.2	56.5	55.5	55.3	55.3	54.1	55 - 59
April 90%-F	April 90%-Exceedance Outlook – 50% Historical Meteorology 53.5°F CCR	utlook – 50%	6 Historical	Meteorolog	gy 53.5°F C	CCR	
Keswick Dam KWK	52.9	53.0	53.1	53.0	53.0	52.3	54 - 56
Sac. R. abv Clear Creek CCR	53.5	53.5	53.5	53.5	53.4	52.4	54 - 58
Balls Ferry BSF	56.8	56.3	55.3	55.3	55.1	53.5	55 - 58
April 50%-E	o-Exceedance Outlook – 10% Historical Meteorology 53.5°F CCR	utlook – 10%	6 Historical	Meteorolog	gy 53.5°F C	CCR	
Keswick Dam KWK	52.8	52.9	53.0	52.9	53.1	52.9	54 - 57
Sac. R. abv Clear Creek CCR	53.5	53.5	53.5	53.4	53.5	52.9	54 - 58
Balls Ferry BSF	57.4	56.4	55.6	55.3	55.3	54.1	55 - 59
April 50%-F	o-Exceedance Outlook – 50% Historical Meteorology 53.5°F CCR	utlook – 50%	6 Historical	Meteorolog	gy 53.5°F C	CCR	
Keswick Dam KWK	52.9	52.9	53.1	53.0	53.1	52.3	53 - 56
Sac. R. aby Clear Creek CCR	53.5	53.5	53.5	53.4	53.5	52.3	54 - 58
Balls Ferry BSF	56.9	56.2	55.3	55.3	55.2	53.4	55 - 58

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has

estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

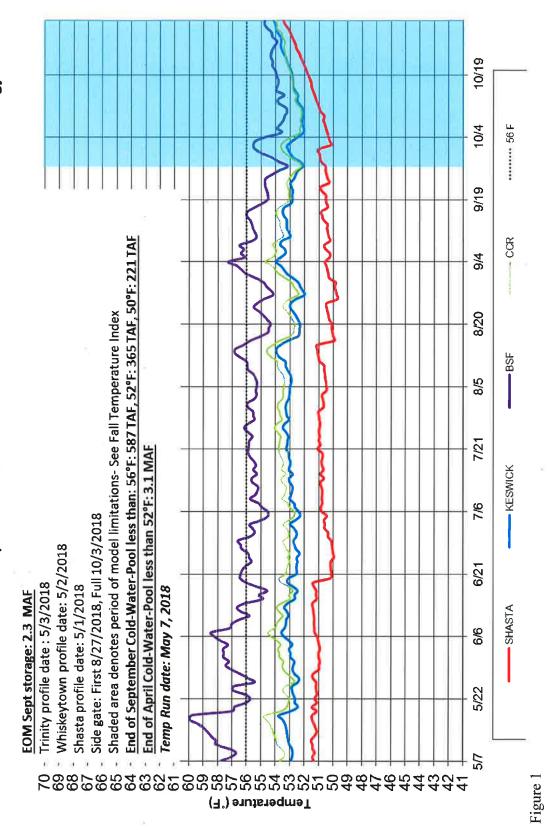
model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used 2. Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are 1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on May 1, May 3, and May 2 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The for all model runs. The resulting low creek flows can cause significant additional warming in the upper Sacramento River during with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project. spring.

90% runoff exceedance for the 90% runoff exceedance studies. The April 2018 Operation Outlook is modified to adjust for real-time release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 3. Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir operations in early May suggesting the monthly Keswick release may average closer to 8,500 cfs.

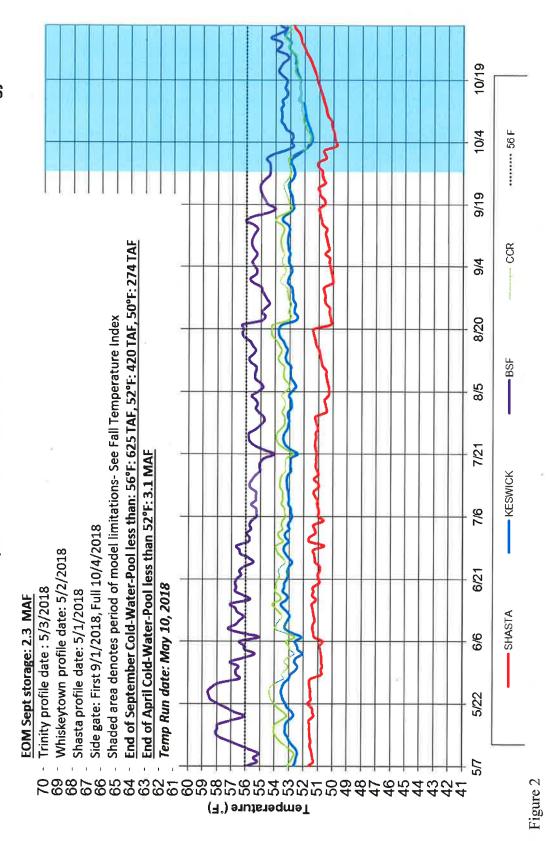
operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% limited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general 4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

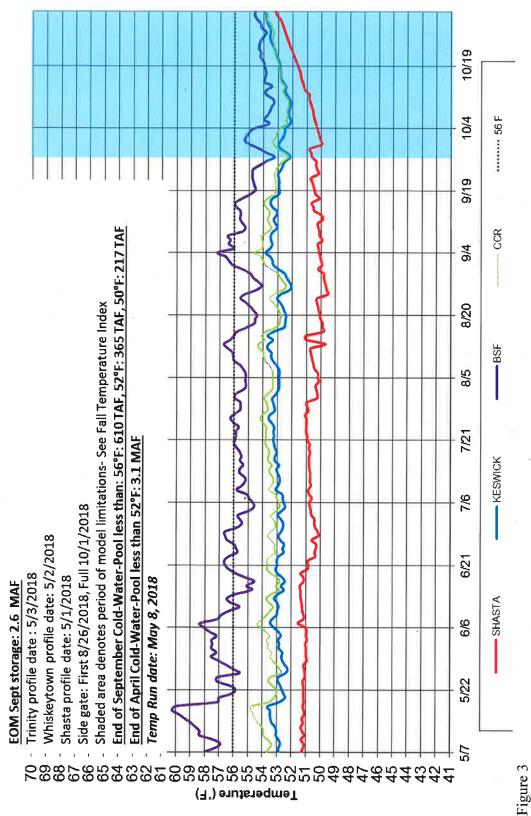
patterned after like months on a 6-hour time-step, or as noted. Assumed inflow temperature remain static inputs and do not vary with 6. Meteorological inputs represent historical (1985 – 2017) monthly mean equilibrium temperature exceedance at 10% and 50% the assumed meteorology. 7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream 8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway. tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring.

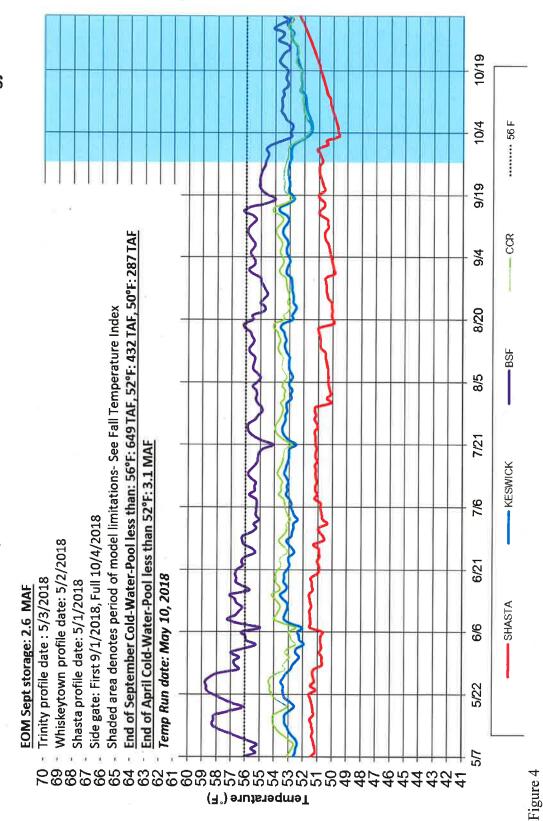

Model Run Date May 7-10, 2018

Temperature Analysis Results:


Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and temperature compliance target location and temperature. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1-4. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figures 5-7.

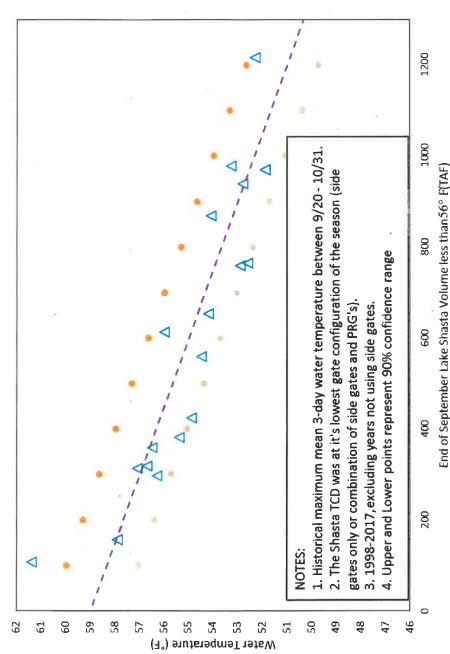
Model Run	End of September First Side Gate Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
(1) 90% Hydro, 10% Historical Met 53.5 CCR	578	8/27	10/3
(2) 90% Hydro, 50% Historical Met 53.5 CCR	625	9/1	10/4
(3) 50% Hydro, 10% Historical Met 53.5 CCR	610	8/26	10/1
(4) 50% Hydro, 50% Historical Met 53.5 CCR	649	9/1	10/4


Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology

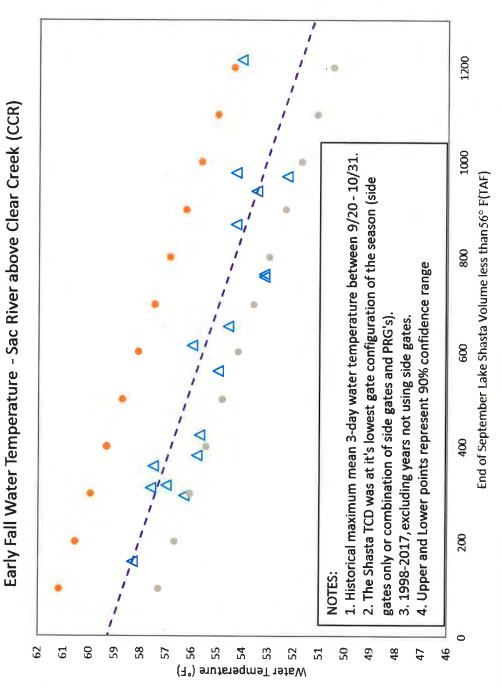

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 50% Historical Meteorology

2018 April 50%-Exceedance Water Outlook - 10% Historical Meteorology Sacramento River Modeled Temperature

2018 April 50%-Exceedance Water Outlook - 50% Historical Meteorology Sacramento River Modeled Temperature


Figures 5-7 Model Performance and Fall Temperature Index:

temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large 1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperature gradient between the pressure relief gates (PRG) and the side gates.


2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.

3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 °F downstream based on the end-of-September lake volume less than 56°F, see charts below.

4. Refinement of these estimates and concepts is currently underway.

Sacramento River - Lake Shasta Early Fall Water Temperature - Keswick (KWK)

Sacramento River - Lake Shasta

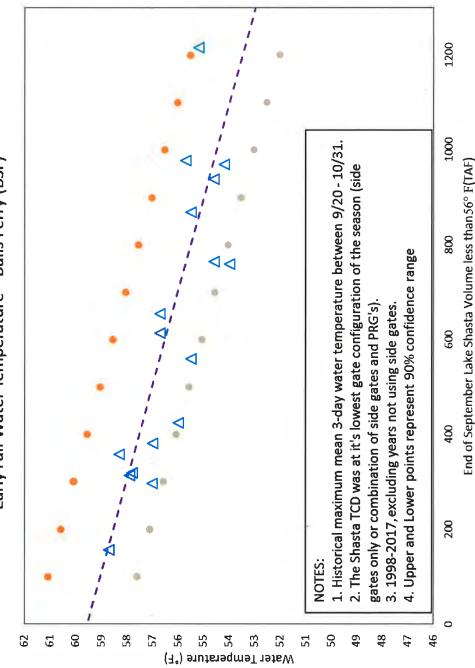


Figure 7

Sacramento River - Lake Shasta Early Fall Water Temperature - Balls Ferry (BSF)

May 10, 2018

Upper Sacramento River – April 2018 Preliminary Temperature Analysis

Summary of Temperature Results by Month (Monthly Average Temperature °F)

	(DOV	SEL	001	Late Sep- Oct Uncertainty
April 90%-Exceedance Outlook – 10% Historical Meteorology 53°F CCR (May) 56°F BSF (Jun-Oct)	utlook – 10%	Historical	Meteorology	v 53°F CCR	(May) 56°	F BSF (Ju	in-Oct)
Keswick Dam KWK	52.3	52.3	53.5	53.6	53.5	52.4	54 - 57
Sac. R. abv Clear Creek CCR	53.0	53.0	54.0	54.1	53.9	52.5	54 - 58
Balls Ferry BSF	56.8	56.0	56.0	56.0	55.6	53.7	55 - 58
April 90%-Exceedance O	Outlook - 50% Historical Meteorology 53°F CCR (May) 56°F BSF (Jun-Oct)	Historical	Meteorology	7 53°F CCR	(May) 56°	F BSF (Ju	in-Oct)
Keswick Dam KWK	52.4	52.7	53.8	53.6	53.2	52.0	53 - 56
Sac. R. abv Clear Creek CCR	53.0	53.2	54.2	54.0	53.6	52.1	54 - 57
Balls Ferry BSF	56.4	56.0	56.0	55.9	55.3	53.2	55 - 58
April 50%-Exceedance O	Outlook - 10% Historical Meteorology 53°F CCR (May) 56°F BSF (Jun-Oct)	Historical	Meteorology	/ 53°F CCR	(May) 56°	F BSF (Ju	in-Oct)
Keswick Dam KWK	52.3	52.3	53.4	53.6	53.6	52.4	53 - 56
Sac. R. abv Clear Creek CCR	53.0	53.0	53.9	54.1	54.0	52.5	54 - 58
Balls Ferry BSF	57.0	56.0	55.9	56.0	55.8	53.7	55 - 58
April 50%-Exceedance O	Outlook - 50% Historical Meteorology 53°F CCR (May) 56°F BSF (Jun-Oct)	Historical	Meteorology	7 53°F CCR	(May) 56°	F BSF (Ju	n-Oct)
Keswick Dam KWK	52.3	52.7	53.8	53.8	53.4	52.0	53 - 56
Sac. R. abv Clear Creek CCR	53.0	53.2	54.2	54.2	53.7	52.1	54 - 57
Balls Ferry BSF	56.5	56.0	56.0	56.0	55.4	53.2	55 - 58

* The HEC5Q model output is displayed above for the months April through October. Based on past analysis, the temperature model does not perform well in late September and October. One factor is that the modeled release temperatures are cooler than has

estimate is provided based on the Fall Temperature Index (graphics below). This is based on a historical relationship between end-of-September Lake Shasta Volume less than 56°F and likely downstream temperature performances for the early fall months. The range historically been achieved when all release is through the side gates (lowest gates), especially when there's a large temperature gradient between the pressure relief gates (PRG) and the side gates. For the months of September and October, an uncertainty represents the 90% confidence interval based on that data. Refinement of the concepts for those estimates is underway.

Temperature Model Inputs, Assumptions, Limitations and Uncertainty:

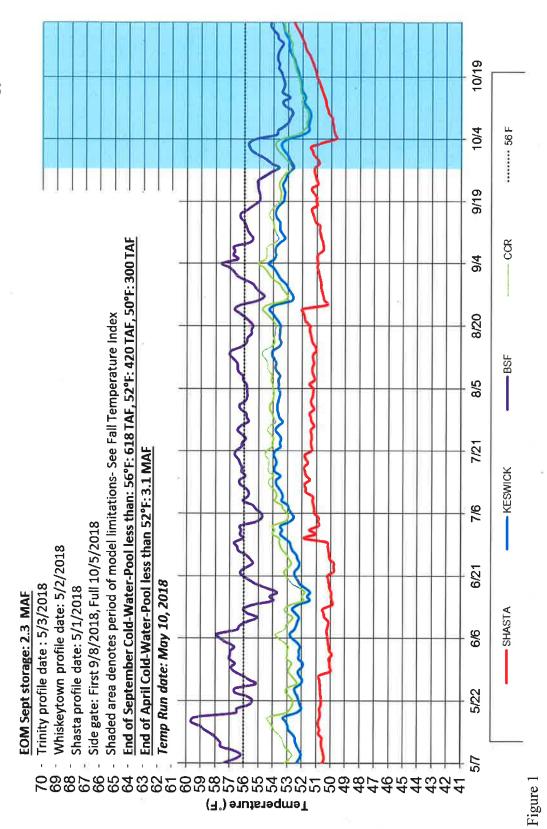
model performs well after the reservoir stratifies, typically in late spring. The concern this year is assuming over or under estimations not available beyond 5 days. Creek flows developed from the historical record that most closely reflects current conditions were used 2. Guidance on forecasted flows from the creeks (e.g., Cow, Cottonwood, Battle, etc.) between Keswick Dam and Bend Bridge are 1. The latest available profiles for Shasta, Trinity, and Whiskeytown were taken on May 1, May 3, and May 2 respectively. Model results are sensitive to initial reservoir temperature conditions and the model performs best under highly stratified conditions. The for all model runs. The resulting low creek flows can cause significant additional warming in the upper Sacramento River during with variable hydrologic and meteorological conditions and not capturing the stratification with sufficient detail to project. spring.

90% runoff exceedance for the 90% runoff exceedance studies. The April 2018 Operation Outlook is modified to adjust for real-time release, and end-of-month reservoir storage) for the 90%- and 50%-exceedances. Trinity Lake inflows are updated with the CNRFC 3. Operation is based on the April 2018 Operation Outlooks and DWR Bulletin 120 inflow projections (monthly flows, reservoir operations in early May suggesting the monthly Keswick release may average closer to 8,500 cfs.

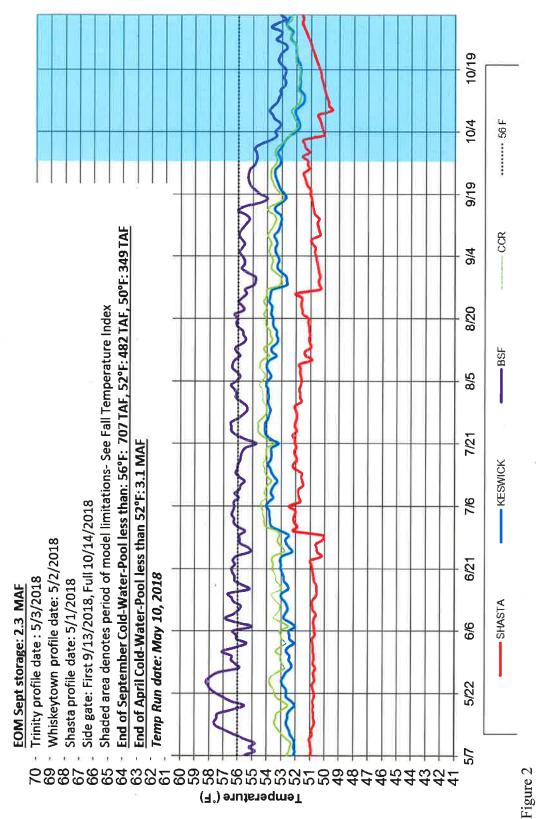
operation outlooks. Mean daily flow patterns are user defined and are generalized representations. It is important to note that these outlooks do not suggest a certain actual future outcome, but rather the statistical likelihood of an event occurring, including, but not projections that will likely fall within the range of uncertainty based on the different hydrologic runoff conditions between the 90% imited to, projected storage and releases. Thus, the outlooks do not provide exact end of month storages or flow rates but general 4. Although mean daily flows and releases are temperature model inputs, they are based on the mean monthly values from the and 50% runoff exceedance hydrology.

5. Cottonwood Creek flows, Keswick to Bend Bridge local flows, and ACID diversions are mean daily synthesized flows based on the available historical record for a 1922-2002 study period. Inflows were adjusted to a 95% historical exceedance for both the 90% and 50% runoff exceedance studies.

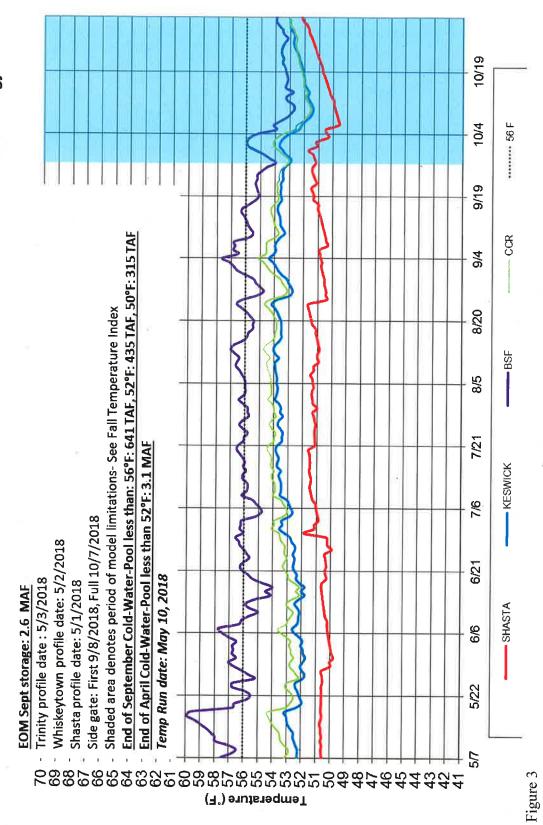
patterned after like months on a 6-hour time-step, or as noted. Assumed inflow temperature remain static inputs and do not vary with 6. Meteorological inputs represent historical (1985 – 2017) monthly mean equilibrium temperature exceedance at 10% and 50% he assumed meteorology. 7. Meteorology, as well as the flow volume and pattern, significantly influences reservoir inflow temperatures and downstream 8. Modified model coefficients more closely represent actual Keswick Dam temperatures. As a result, temperature predictions tributary temperatures; and consequently, the development of the cold-water pool during winter and early spring. downstream of Keswick Dam are likely to be warmer than actual. Model re-calibrations efforts are underway.

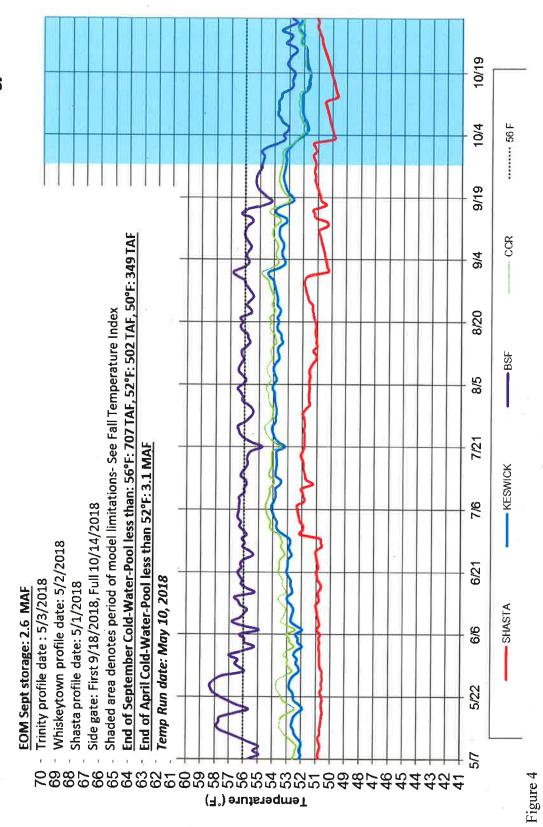

Model Run Date May 10, 2018

Temperature Analysis Results:


Modeling runs explore Sacramento River compliance performance above Clear Creek confluence and Balls Ferry locations by varying hydrology and temperature compliance target location and temperature. The temperature results for the Sacramento River between Keswick Dam and Balls Ferry are shown in Figures 1-4. The fall uncertainty estimation relationship between end-of-September lake volume below 56°F and a Balls Ferry compliance through fall is based on the Figures 5-7.

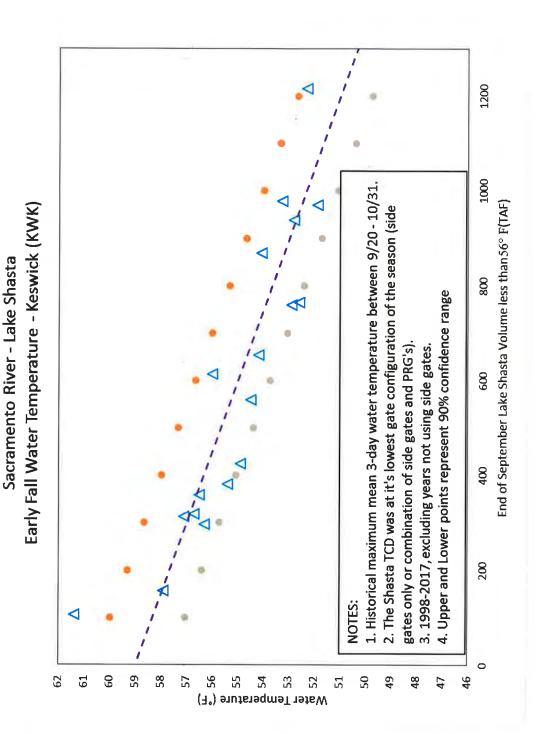
Model Run	End of September Cold Water Pool <56°F (TAF)	First Side Gate	Full Side Gates
(1) 90% Hydro, 10% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	618	8/6	10/5
(2) 90% Hydro, 50% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	707	9/13	10/14
(3) 50% Hydro, 10% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	641	8/6	10/7
(4) 50% Hydro, 50% Historical Met 53 CCR (May) & 56 BSF (Jun-Oct)	707	9/18	10/14

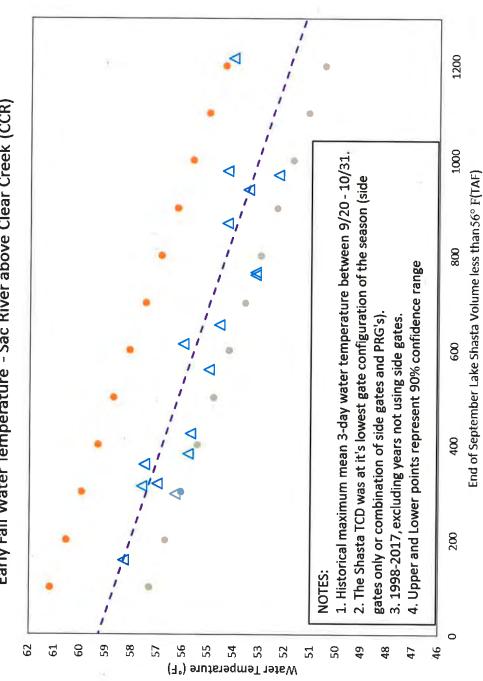

Sacramento River Modeled Temperature 2018 April 90%-Exceedance Water Outlook - 10% Historical Meteorology


2018 April 90%-Exceedance Water Outlook - 50% Historical Meteorology Sacramento River Modeled Temperature

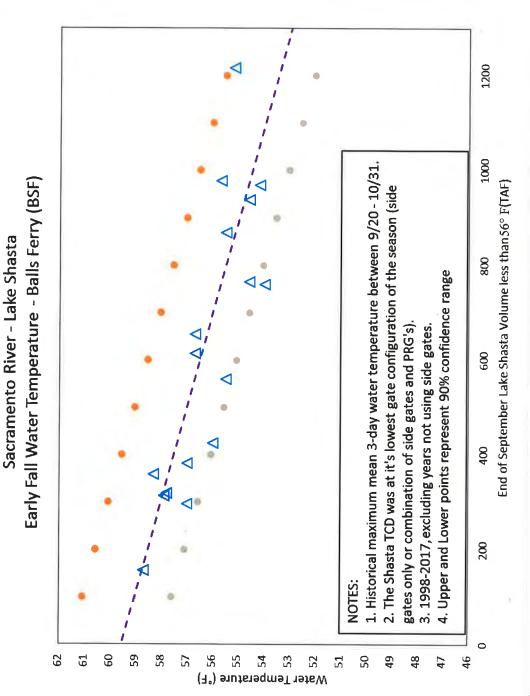
2018 April 50%-Exceedance Water Outlook - 10% Historical Meteorology Sacramento River Modeled Temperature

Sacramento River Modeled Temperature 2018 April 50%-Exceedance Water Outlook - 50% Historical Meteorology

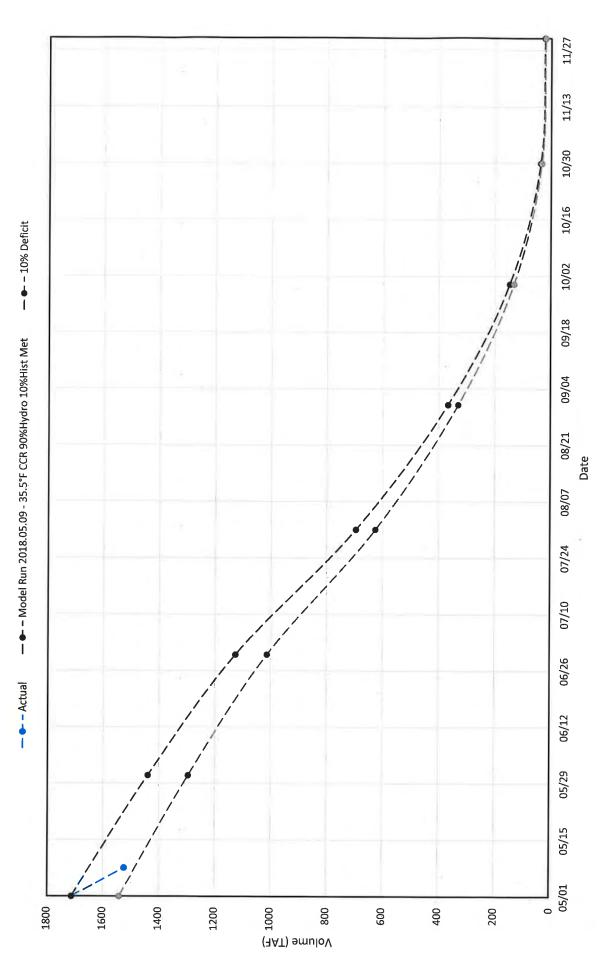

Figures 5-7 Model Performance and Fall Temperature Index:


temperatures are cooler than has historically been achieved when all release is through the side gates (lowest gates), especially when there's a large 1. Based on past analyses, the temperature model does not perform well in late September and October. One factor is that the modeled release temperature gradient between the pressure relief gates (PRG) and the side gates.

2. Based on historical records, the end-of-September Lake Shasta volume below 56°F can be used as an indicator of fall water temperature in the river reach to Balls Ferry.


3. Based on these records and estimates, the index below illustrates a range of uncertainty in the ability to meet for river temperatures not to exceed 56 °F downstream based on the end-of-September lake volume less than 56°F; see charts below.

4. Refinement of these estimates and concepts is currently underway.



Early Fall Water Temperature - Sac River above Clear Creek (CCR) Sacramento River - Lake Shasta

Printed: 2018.05.11

2018 Shasta Cold Water Pool Volume ≤49°F

Enclosure 9

Summary Document for Shasta/Keswick Operational Scenarios Prepared by the Southwest Fisheries Science Center on May 14th, 2018

Below are results comparing four USBR scenarios ran May 10th 2018. Scenarios differ by hydrology (Input 50 or 90 percent exceedance) and temperature target strategies (53.5 F at CCR for the entire season, or 53 at CCR in May followed by 56 at BSF from June to October), with air temperature at 10 exceedances of L3MTO. Inputs from scenarios are used to generate daily average Sacramento River water temperatures using the RAFT model and associated temperature-dependent egg mortality and survival estimates using the NMFS temperature mortality model (Martin et al. 2017) for the 2018 temperature management season (Table 1 and Figures 2,3,6 and 7). Additionally, a set of mortality model runs were generated using USBR's HEC-5Q model output (Table 2 and Figures 4,5,8, and 9) for comparison purposes, where the RAFT model was not used, but temperatures from the HEC-5Q nodes were linearly interpolated in space.

Further details of modeling methods are at: <u>http://oceanview.pfeg.noaa.gov/CVTEMP/</u>

Table 1: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution.

Scenario	Mean	Median	Lower	Upper
	(%)	(%)	(%)	(%)
MAY_10_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR	11.95	3.63	0.03	58.78
MAY_10_2018_INPUT_50_OUTPUT_50_50L3MTO_53_CCR	11.33	2.02	0.04	58.88
MAY_10_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR	12.49	4.84	0.08	58.64
MAY_10_2018_INPUT_90_OUTPUT_90_50L3MTO_53_CCR	11.04	2.47	0.04	58.06
MAY_10_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR_56_BSF	25.61	22.99	0.08	67.74
MAY_10_2018_INPUT_50_OUTPUT_50_50L3MTO_53_CCR_56_BSF	27.96	26.54	0.08	68.78
MAY_10_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR_56_BSF	24.46	21.41	0.08	66.83
MAY_10_2018_INPUT_90_OUTPUT_90_50L3MTO_53_CCR_56_BSF	24.03	20.56	0.08	66.57

Table 2: Estimated temperature-dependent egg mortality under different scenarios assuming a 2012-2017 spatial and temporal redd distribution using HEC-5Q output.

Scenario	Mean	Median	Lower	Upper
Scenario	(%)	(%)	(%)	(%)
MAY_10_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR	10.9	2.94	0.08	56.61
MAY_10_2018_INPUT_50_OUTPUT_50_50L3MTO_53_CCR	11.46	4.16	0.08	56.47
MAY_10_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR	9.86	1.23	0.08	56.42
MAY_10_2018_INPUT_90_OUTPUT_90_50L3MTO_53_CCR	9.69	1.79	0.08	55.66
MAY_10_2018_INPUT_50_OUTPUT_50_10L3MTO_53_CCR_56_BSF	23.39	19.54	0.08	66.13
MAY_10_2018_INPUT_50_OUTPUT_50_50L3MTO_53_CCR_56_BSF	22.49	18.32	0.08	65.17
MAY_10_2018_INPUT_90_OUTPUT_90_10L3MTO_53_CCR_56_BSF	24.82	22.35	0.08	67.05
MAY_10_2018_INPUT_90_OUTPUT_90_50L3MTO_53_CCR_56_BSF	21.28	16.97	0.08	64.59

Summary Document for Shasta/Keswick Operational Scenarios Prepared by the Southwest Fisheries Science Center on May 14th, 2018

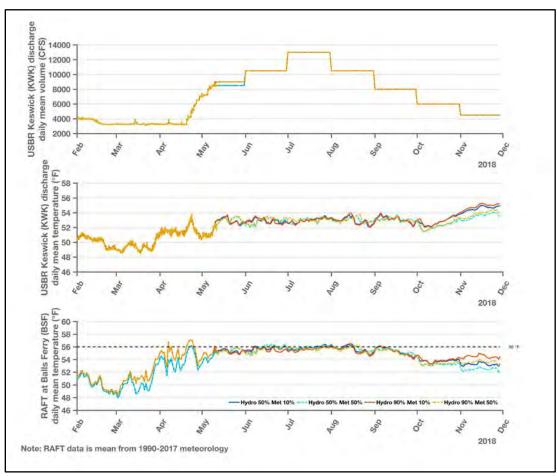


Figure 1: Summary plots showing differences in Keswick discharge volume and temperature, and Balls Ferry RAFT predicted temperature for four scenarios assessed under the scenarios targeting a CCR temperature of 53.5 F.

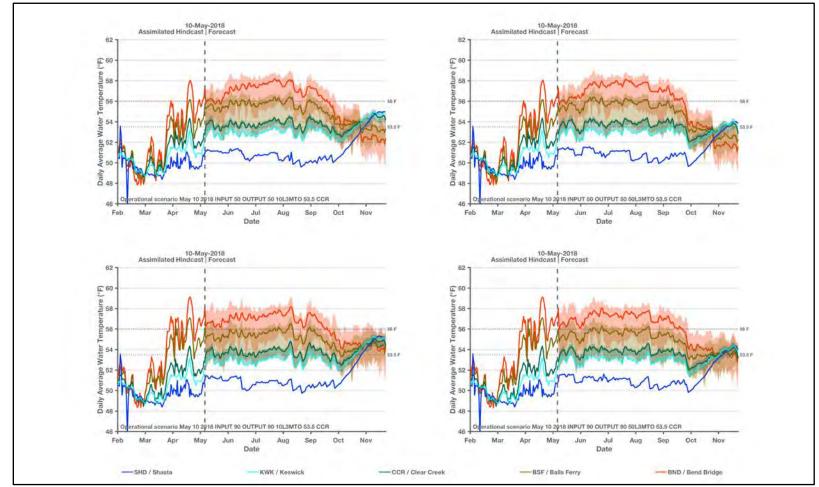


Figure 2: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the four May 10th 2018 scenarios targeting a CCR temperature of 53.5 F.

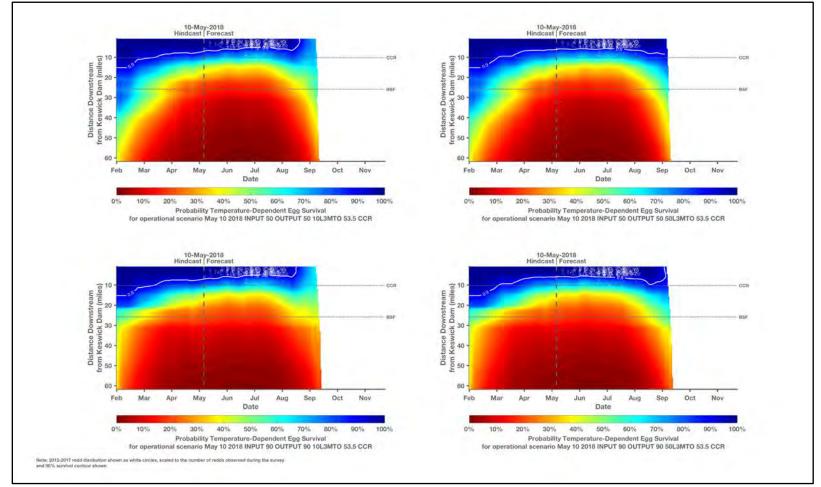


Figure 3: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 10th 2018 scenarios targeting a CCR temperature of 53.5 F.

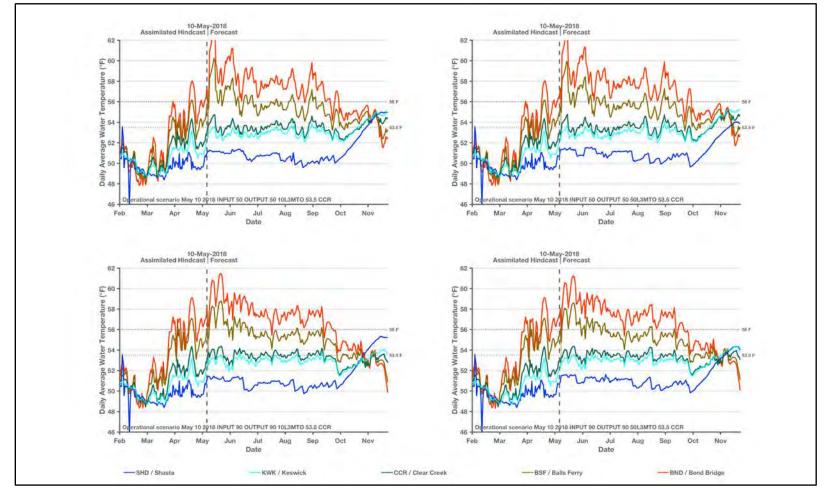


Figure 4: Estimated daily average water temperature produced by scenario input (Shasta, Keswick, Clear Creek, Balls Ferry, and Bend Bridge) under the four May 10th 2018 scenarios targeting a CCR temperature of 53.5 F using HEC-5Q output.

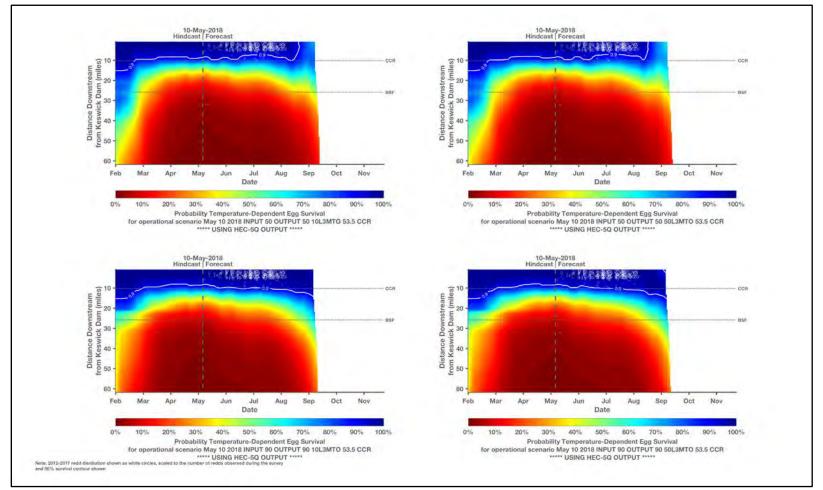


Figure 4: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 10th 2018 scenarios targeting a CCR temperature of 53.5 F using HEC-5Q output. To generate temperatures between HEC-5Q model nodes (KESWICK, CLEAR_CR, BALL_FERRY, JELLYS_FERRY, BEND_BR, and RED_BLIFF) linear interpolation in space was used.

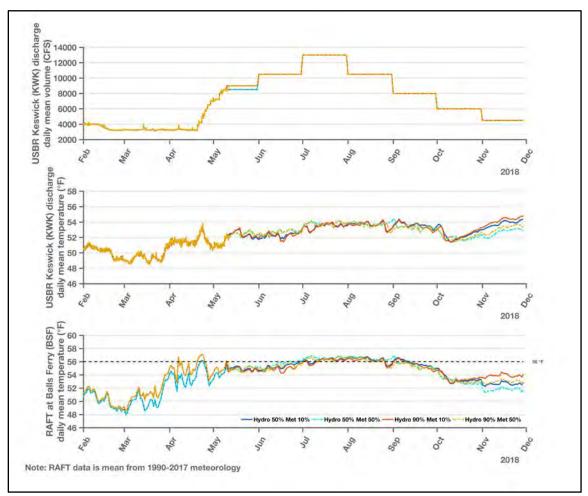


Figure 5: Summary plots showing differences in Keswick discharge volume and temperature, and Balls Ferry RAFT predicted temperature for four scenarios assessed targeting a CCR temperature of 53 F in May and a BSF temperature of 56 F from June-Oct.

Figure 6: Estimated daily average water temperature produced by scenario input (Shasta and Keswick) and the RAFT model (Clear Creek, Balls Ferry, and Bend Bridge) under the four May 10th 2018 scenarios targeting a CCR temperature of 53 F in May and a BSF temperature of 56 F from June-Oct.

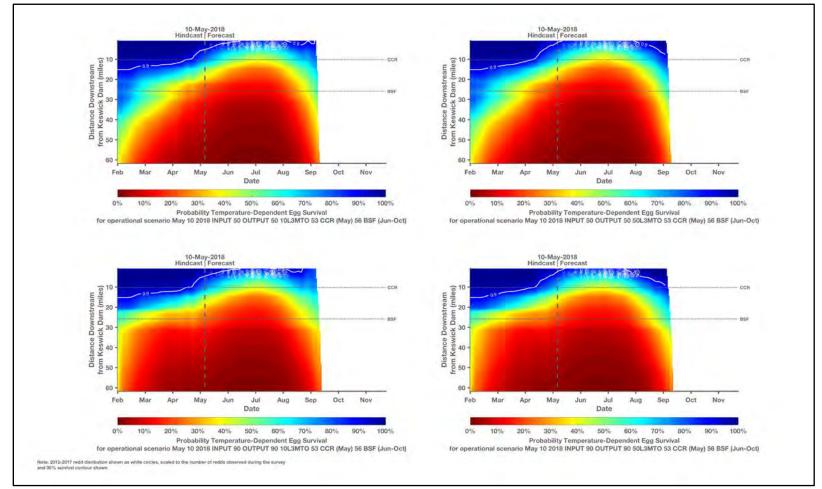


Figure 7: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 10th 2018 scenarios targeting a CCR temperature of 53 F in May and a BSF temperature of 56 F from June-Oct.

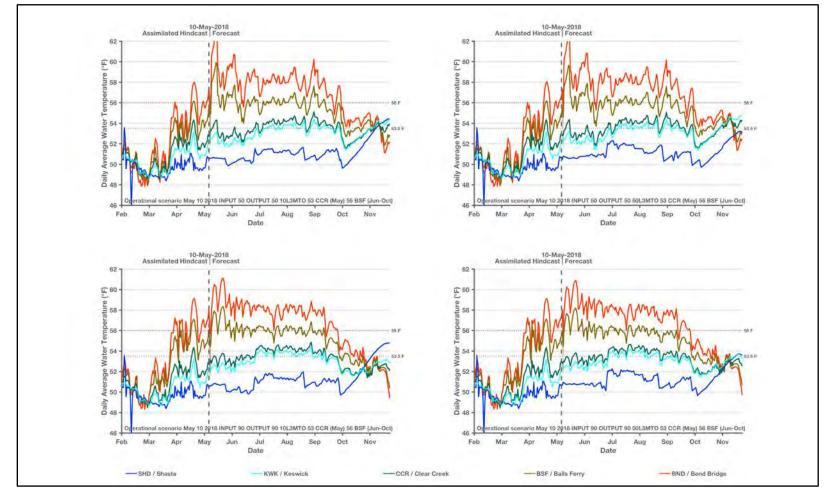


Figure 8: Estimated daily average water temperature produced by scenario input (Shasta, Keswick, Clear Creek, Balls Ferry, and Bend Bridge) under the four May 10th 2018 scenarios targeting a CCR temperature of 53 F in May and a BSF temperature of 56 F from June-Oct using HEC-5Q output.

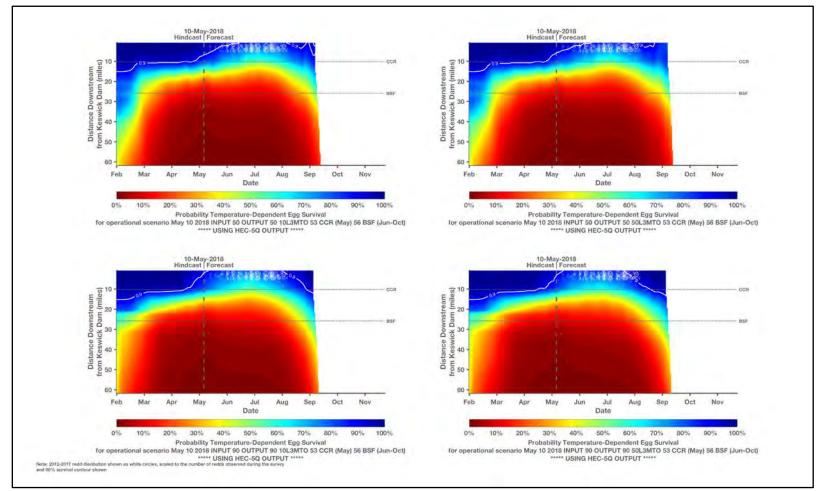


Figure 9: Estimated temperature-dependent egg survival produced by the NMFS temperature mortality model under the four May 10th 2018 scenarios targeting a CCR temperature of 53 F in May and a BSF temperature of 56 F from June-Oct using HEC-5Q output. To generate temperatures between HEC-5Q model nodes (KESWICK, CLEAR_CR, BALL_FERRY, JELLYS_FERRY, BEND_BR, and RED_BLIFF) linear interpolation in space was used.

Reference:

Martin, B. T., Pike, A., John, S. N., Hamda, N., Roberts, J., Lindley, S. T. and Danner, E. M. (2017), Phenomenological vs. biophysical models of thermal stress in aquatic eggs. Ecology Letters 20: 50–59. doi:10.1111/ele.12705

Date	Date of	Scenario	Hydrology		Temperature	Mean egg	Median	Lower	Upper
	Shasta			inputs	model	mortality	egg	confidence	confidence
	profile			-		(%)	mortality	level egg	level egg
							(%)	mortality (%)	mortality (%)
4/18/2018	4/3/2018	56°F Balls Ferry (BSF)	50%	10%L3MTO	RAFT	32.40	32.6	0.08	70.60
4/18/2018	4/3/2018	56°F BSF	50%	10%L3MTO	HEC-5Q	29.03	27.54	0.08	69.12
4/18/2018	4/3/2018	56°F BSF	50%	50%L3MTO	RAFT	44.09	48.02	0.08	74.61
4/18/2018	4/3/2018	56°F BSF	50%	50%L3MTO	HEC-5Q	40.56	43.04	0.08	73.08
4/18/2018	4/3/2018	56°F BSF	90%	10%L3MTO	RAFT	34.58	35.02	0.08	71.40
4/18/2018	4/3/2018	56°F BSF	90%	10%L3MTO	HEC-5Q	31.32	30.35	0.08	69.78
4/18/2018	4/3/2018	56°F BSF	90%	50%L3MTO	RAFT	38.52	40.64	0.08	73.45
4/18/2018	4/3/2018	56°F BSF	90%	50%L3MTO	HEC-5Q	35.19	36.01	0.08	71.55
4/20/2018	4/17/2018	56°F BSF	90%	10%L3MTO	RAFT	14.46	4.95	0.08	61.79
4/20/2018	4/17/2018	56°F BSF	90%	10%L3MTO	HEC-5Q	12.86	3.46	0.08	59.98
4/24/2018	4/17/2018	55.5°F BSF	50%	50% (1985-2017)	HEC-5Q	9.44	2.02	0.08	54.16
4/24/2018	4/17/2018	55.5°F BSF	50%	10% (1985-2017)	HEC-5Q	10.38	3.15	0.08	55.02
4/24/2018	4/17/2018	55.5°F BSF	90%	50% (1985-2017)	HEC-5Q	9.77	2.07	0.08	55.01
4/24/2018	4/17/2018	55.5°F BSF	90%	10% (1985-2017)	HEC-5Q	11.88	3.08	0.08	58.41
4/24/2018	4/17/2018	53°F CCR	90%	10% (1985-2017)	HEC-5Q	5.16	0.27	0.08	44.30
5/10/2018	5/1/2018	53.5°F CCR	50%	10% (1985-2017)	RAFT	11.95	3.63	0.03	58.78
5/10/2018	5/1/2018	53.5°F CCR	50%	10% (1985-2017)	HEC-5Q	10.90	2.94	0.08	56.61
5/10/2018	5/1/2018	53.5°F CCR	50%	50% (1985-2017)	RAFT	11.33	2.02	0.04	58.88
5/10/2018	5/1/2018	53.5°F CCR	50%	50% (1985-2017)	HEC-5Q	11.46	4.16	0.08	56.47
5/10/2018	5/1/2018	53.5°F CCR	90%	10% (1985-2017)	RAFT	12.49	4.84	0.08	58.64
5/10/2018	5/1/2018	53.5°F CCR	90%	10% (1985-2017)	HEC-5Q	9.86	1.23	0.08	56.42
5/10/2018	5/1/2018	53.5°F CCR	90%	50% (1985-2017)	RAFT	11.04	2.47	0.04	58.06
5/10/2018	5/1/2018	53.5°F CCR	90%	50% (1985-2017)	HEC-5Q	9.69	1.79	0.08	55.66
5/10/2018	5/1/2018	53°F CCR May, 56°F	50%	10% (1985-2017)	RAFT	25.61	22.99	0.08	67.74
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	50%	10% (1985-2017)	HEC-5Q	23.39	19.54	0.08	66.13
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	50%	50% (1985-2017)	RAFT	27.96	26.54	0.08	68.78
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	50%	50% (1985-2017)	HEC-5Q	22.49	18.32	0.08	65.17
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	90%	10% (1985-2017)	RAFT	24.46	21.41	0.08	66.83
		BSF June-October							

Table 1. Summary of temperature-dependent egg mortality from various hydrologic scenarios.

5/10/2018	5/1/2018	53°F CCR May, 56°F	90%	10% (1985-2017)	HEQ-5Q	24.82	22.35	0.08	67.05
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	90%	50% (1985-2017)	RAFT	24.03	20.56	0.08	66.57
		BSF June-October							
5/10/2018	5/1/2018	53°F CCR May, 56°F	90%	50% (1985-2017)	HEQ-5Q	21.28	16.97	0.08	64.59
		BSF June-October							

*Temperature-dependent egg mortality results assume a 2012-2017 spatial and temporal winter-run Chinook salmon redd distribution