7.2 WATER QUALITY ATTAINMENT STRATEGIES AND TMDLS FOR SAN FRANCISCO BAY AND BAY SEGMENTS7.2.1 Water Quality Attainment Strategy to Support Copper Site-specific Objectives for San Francisco Bay, and Nickel Site-specific Objectives for South San Francisco BayThe Water Quality Attainment Strategy (WQAS) for copper in all San Francisco Bay segments (see Figure 7.2.1-1) and nickel in South San Francisco Bay is designed to prevent water quality degradation and ensure attainment of the copper and nickel site-specific objectives (SSOs). This section describes the details of the WQAS and how the Water Board will use its regulatory authority to implement this strategy. The four elements of the WQAS are:
7.2.1.1 BackgroundAll San Francisco Bay segments (see Figure 7.2.1-1) meet water quality objectives for copper and nickel. Since the mid-1980s, because of effective treatment and successful pollution prevention and source control efforts, substantial reductions in metal loading to San Francisco Bay segments have been achieved. Other sources that are difficult to manage such as urban runoff (which includes copper from automobile brake pads), historical deposits of copper in the Bay sediments, and natural sources of copper are among the dominant contributions to current ambient water concentrations. SSOs (see Chapter 3) for dissolved copper in all Bay segments (and nickel in South San Francisco Bay) have been derived using toxicity data representing site-specific conditions in all San Francisco Bay segments, and these SSOs fully protect San Francisco Bay beneficial uses. 7.2.1.2 Implementation Plan and Monitoring ProgramThis section discusses the actions and ambient monitoring program needed to ensure continued attainment of the copper site-specific objectives throughout San Francisco Bay and. ensure that copper sources are properly managed so ambient copper levels do not increase due to potential increases in loading of copper to San Francisco Bay. The implementation plan also calls for requirements in NPDES permits to support investigations to resolve three key areas of remaining technical uncertainty regarding copper: urban tributary loads and trends; toxicity to benthic organisms; and possible effects on the olfactory system of salmonids. Control Measures for Urban Runoff Management AgenciesThe NPDES permits for urban runoff management agencies shall require the implementation of best management practices and copper control measures designed to prevent urban runoff discharges from causing or contributing to exceedances of copper water quality objectives. Requirements in each permit issued or reissued and applicable for the term of the permit shall be based on an updated assessment of control measures intended to reduce copper in stormwater runoff to the maximum extent practicable. Urban runoff management agencies must implement control measures targeting: vehicle brake pads, architectural copper, copper pesticides, and industrial copper use. Additionally, these permits shall contain requirements to conduct or cause to be conducted: monitoring of copper loading to the Bay at locations and frequency sufficient to track loading trends; and technical studies to investigate possible copper sediment toxicity and sublethal effects on salmonids. If an ambient trigger concentration in any San Francisco Bay segment (see Ambient Monitoring Program, below) is exceeded, all urban runoff management agencies discharging to that segment shall submit a report to the Water Board that describes best management practices that are currently being implemented and additional measures, with a schedule, that will be implemented to prevent their copper discharges from causing or contributing to the exceedance. Control Measures for Wastewater Treatment FacilitiesThe management measures for municipal and industrial wastewater treatment facilities will be implemented through their individual NPDES permits, which shall include the following elements:
The baseline pollution prevention measures for wastewater facilities include:
More advanced, facility-specific pollution prevention measures shall be implemented by facilities that exceed a copper effluent limit due to increased copper influent loading compared to the previous year’s performance. Additionally, if an ambient trigger concentration (see Ambient Monitoring Program, below) is exceeded, each municipal and industrial wastewater facility discharging to that segment of the Bay shall evaluate the history of its facility’s effluent copper concentrations. Those facilities with increasing copper effluent trends shall develop and implement plans to control these increasing levels. Metal TranslatorsAn important regulatory element of the WQAS is the specification of metal translators. Water quality objectives for copper and nickel are expressed as dissolved metal concentrations. Effluent limits for the wastewater dischargers’ treatment facilities are expressed as total metal concentrations and must be calculated according to the procedure outlined in the “Policy for Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California.” Therefore, for metals like copper and nickel, the calculation of an effluent limit requires the use of a ratio of total to dissolved metals called the metal translator. South San Francisco Bay copper and nickel translators were developed using a regression relationship between the translators and total suspended solids (TSS). The translators were computed by evaluating the upper 95 percent confidence interval regression relationship at the median TSS value for South San Francisco Bay. For this reason, there is a single translator value for each metal (Table 7.2.1-1). The higher translators that result from using the upper confidence level regression result in lower numeric effluent limits and provide an additional measure of protection of beneficial uses. There is not a strong relationship between TSS and translators for the segments of the Bay north of the Dumbarton Bridge. There are geographic differences in computed translators between the northernmost segments and those in the southern segments the Bay. In such cases, median and 90th percentile translators can be computed from available data for use in computing average monthly and maximum daily effluent limits, respectively. The translators in Table 7.2.1-2 apply only to deepwater wastewater discharges to San Francisco Bay because the available translator data are not representative of shallow water discharge (defined as those wastewater discharges that have been granted an exception to the prohibition against wastewater discharges into non-tidal water, dead-end sloughs or at any point that wastewater does not receive dilution of at least 10:1) locations. Shallow water wastewater dischargers must develop translators applicable to the discharge location at the time of permit reissuance. Copper From Anti-Fouling Boat PaintPaints applied to boats and ships to control unwanted “fouling” growth on their hulls often contain copper-based biocides. In San Francisco Bay, there are major ports, industrial piers, and dozens of marinas. Boats and ships coated with copper-containing biocides may release copper directly into the Bay during storage, operation, and in-water maintenance. The Water Board is relying on the authority of the California Department of Pesticide Regulation (DPR) to regulate the pesticidal use of copper in antifouling paints such that water quality objectives will be attained. The Water Board will work with DPR as it executes its regulatory strategy for biocides in marine antifouling coatings, which includes monitoring to evaluate water quality impacts and review of registration status. Control Measures for LagoonsThere are many managed lagoons that are hydraulically connected to the Bay. Because of nutrient loading and stagnant conditions, excessive growth of aquatic plants and algae can cause nuisance conditions. In addition to mechanical harvesting, copper-based algaecides are used to control nuisance plant and algae growth. The application of these algaecides is permitted under the State Water Board’s Statewide General NPDES Permit (Order No. 2004-0009-DWQ) for discharges of aquatic pesticides to surface waters. The Water Board recognizes coverage under the general permit as being sufficient to ensure that application of copper pesticides to lagoons shall not cause or contribute to violations of the water quality objectives. Ambient Monitoring ProgramThe implementation plan establishes copper control measures in order to prevent increases in ambient dissolved copper concentrations. Ambient concentrations of copper in the Bay have remained essentially unchanged from 1993 through 2006 and are not expected to increase in the future. In order to determine systematically if ambient concentrations have increased, specific copper concentration triggers are compared to data collected through the Regional Monitoring Program for Trace Substances (RMP). This is accomplished by calculating every year the three-year rolling mean of RMP copper concentrations in segments of the Bay. These rolling mean concentrations will be compared to trigger concentration values for each segment. The trigger concentrations (shown in Table 7.2.1-3) were calculated in order to detect a change (from 2003 concentrations) in dissolved copper concentration of about 1 µg/L with a statistical power of 99%. If the trigger concentration is exceeded in any Bay segment, the Water Board will investigate causes of the exceedance and potential control options and require wastewater and urban runoff dischargers to that segment to investigate whether they have caused or contributed to the exceedance and, if so, to identify and submit a plan and schedule to implement controls to resolve their contribution to the exceedance. The Water Board will assess the continued appropriateness of the SSOs for San Francisco Bay should conditions change in Bay water quality. Dissolved organic carbon (DOC) will be used as a surrogate measure of the protective effect of Bay water against copper water column toxicity. An analysis and evaluation of trends in DOC data collected through the RMP will determine whether or not additional water column toxicity tests are needed to confirm that the SSOs are protective. In addition, the Water Board will evaluate sediment copper concentration and sediment toxicity data collected through the RMP to assess possible effects related to copper accumulation in Bay sediments. The need for a reevaluation of the SSOs or other regulatory actions will be established through the triennial review of the Basin Plan. 7.2.2 San Francisco Bay Mercury TMDLThe following sections establish the allowable annual mercury load (Total Maximum Daily Load [TMDL]) to San Francisco Bay, and actions and monitoring necessary to implement the TMDL. The numeric targets, allocations, and associated implementation plan will ensure that all San Francisco Bay segments attain applicable water quality standards, including the mercury water quality objectives set forth in Table 3-3B, established to protect and support beneficial uses. The TMDL allocations and implementation plan focus on controlling the amount of mercury that reaches the Bay and identifying and implementing actions to minimize mercury bioavailability. The organic form of mercury (methylmercury) is toxic and bioavailable, but information on ways of controlling methylmercury production is limited. However, this is an area of active research and strategies for controlling this process are forthcoming. The effectiveness of implementation actions, monitoring to track progress toward targets, and the scientific understanding pertaining to mercury will be periodically reviewed and the TMDL may be adapted as warranted. 7.2.2.1 Problem StatementSan Francisco Bay is impaired because mercury contamination is adversely affecting existing beneficial uses, including sport fishing, preservation of rare and endangered species, and wildlife habitat. Mercury concentrations in San Francisco Bay fish are high enough to threaten the health of humans who consume them. In addition, mercury concentrations in some bird eggs harvested from the shores of San Francisco Bay are high enough to account for abnormally high rates of eggs failing to hatch. In the context of this TMDL, “San Francisco Bay” refers to the following water bodies:
This TMDL also addresses the following mercury-impaired water bodies that exist within the water bodies listed above:
7.2.2.2 Numeric TargetsTMDL numeric targets interpret narrative and/or numeric water quality standards, including beneficial uses and water quality objectives. To protect humans who consume Bay fish, the average fish tissue mercury concentration for a commonly consumed fish species is specified below as a human health target. To protect wildlife and rare and endangered species, the average fish tissue mercury concentration in fish consumed by piscivorous birds is specified below as a wildlife target. The goal of this target is that controllable water quality factors not cause detrimental mercury concentrations in San Francisco Bay wildlife, which is consistent with the bioaccumulation objective in Chapter 3. To achieve the human health and wildlife targets and to attain water quality standards, the Baywide suspended sediment mercury concentration target is 0.2 mg mercury per kg dry sediment. The Regional Monitoring Program (RMP) conducts monitoring relevant to evaluating progress toward meeting the sediment and human health and wildlife targets. The following passages describe acceptable approaches to evaluate progress toward meeting the targets. Other approaches can be considered during adaptive implementation reviews. Suspended Sediment TargetThe suspended sediment target (0.2 mg mercury per kg dry sediment) shall be compared to the annual median Bay suspended sediment mercury concentration found through RMP monitoring. The suspended sediment mercury concentration shall be computed as the difference between total and dissolved mercury concentration in a water sample (at each location) divided by the suspended sediment concentration for that same sample. Human Health TargetThe human health target is a fish tissue mercury concentration (0.2 mg mercury per kg fish tissue). This target applies to average wet weight fish tissue muscle concentrations in 60 cm long striped bass. The RMP conducts fish tissue sampling and analysis in San Francisco Bay every three years. Progress toward attainment of the human health target shall be evaluated by tracking mercury concentrations in striped bass, a commonly consumed sport fish with relatively high mercury concentrations. Striped bass are routinely caught in three size ranges: 45-59 cm (small), 60-82 cm (medium), and larger than 82 cm (large). To provide sufficient data to evaluate the target, striped bass in the small and medium size ranges should be caught and analyzed. The best functional relationship between mercury concentration and length shall be established for the fish caught, and the resulting equation of fit shall be evaluated at 60 cm to compute the mercury concentration to compare to the human health target. The RMP tracks mercury concentrations in other San Francisco Bay sportfish, such as halibut and jack smelt. This information will be used to assess overall trends and human health risks. Wildlife TargetThe wildlife target is a fish tissue mercury concentration (0.03 mg mercury per kg fish). This target applies to average wet weight whole fish concentrations in 3–5 cm length fish. The RMP is developing a long term monitoring program to evaluate mercury concentrations in small fish typically consumed by birds, including by the California least tern. Progress toward attainment of the wildlife target will be evaluated by tracking mercury concentrations in 3–5 cm long Bay fish. The RMP is also collaborating with the U.S. Fish and Wildlife Service on long-term monitoring and analysis of bird egg mercury concentrations. 7.2.2.3 Sources and LossesDuring the California Gold Rush, cinnabar mines in the Central Coast Ranges produced the mercury used to extract gold from the Sierra Nevada foothills. Mercury was later mined and used to produce munitions, electronics, and health care and commercial products. The year 2003 estimate of total mercury inputs to the San Francisco Bay is about 1220 kg/yr. The sources of mercury in San Francisco Bay include bed erosion (about 460 kg/yr), the Central Valley watershed (about 440 kg/yr), urban stormwater runoff (about 160 kg/yr), the Guadalupe River watershed (about 92 kg/yr), direct atmospheric deposition (about 27 kg/yr), non-urban stormwater runoff (about 25 kg/yr), and wastewater discharges (about 18 kg/yr). There is a potential that mercury may enter the Bay from Bay margin contaminated sites and abandoned mercury mines outside the Guadalupe watershed. An evaluation of these potential sources is addressed below under Mercury TMDL Implementation. Using box models for sediment and mercury inputs and outputs to and from San Francisco Bay, the 2003 estimate for San Francisco Bay mercury losses is approximately 1700 kg/yr. Mercury leaves the Bay by transport to the Pacific Ocean via the Golden Gate, the net result of dredging and disposal (in-Bay and upland), and other losses. 7.2.2.4 AllocationsTables 7.2.2-1 through 7.2.2-5 present load and wasteload allocations for San Francisco Bay mercury sources. Table 7.2.2-1 presents load and wasteload allocations by source category and the 2003 estimated annual loads. Tables 7.2.2-2 through 7.2.2-5 contain wasteload allocations for individual wastewater and urban stormwater discharges to San Francisco Bay. When summed, the individual allocations equal the category totals for urban stormwater and wastewater shown in Table 7.2.2-1. 7.2.2.5 Total Maximum Daily LoadThe mercury TMDL for San Francisco Bay is the sum of the load and wasteload allocations, 700 kg/yr. The Bay will attain applicable water quality standards for mercury when the overall mercury load is reduced to the TMDL and mercury methylation control measures are implemented. A TMDL must include a margin of safety to account for any lack of knowledge concerning the relationship between load and wasteload allocations and water quality. This TMDL’s targets and allocations rely on conservative assumptions, which thereby provide an implicit margin of safety. The adaptive approach to implementation provides an additional margin of safety. There is no evidence that mercury contamination in San Francisco Bay is worse at any particular time of year. Therefore, the TMDL and allocation scheme do not have a seasonal component. 7.2.2.6 Mercury TMDL ImplementationThe San Francisco Bay mercury TMDL implementation plan has four objectives: (1) reduce mercury loads to achieve load and wasteload allocations, (2) reduce methylmercury production and consequent risk to humans and wildlife exposed to methylmercury, (3) conduct monitoring and focused studies to track progress and improve the scientific understanding of the system, and (4) encourage actions that address multiple pollutants. The plan establishes requirements for dischargers to reduce or control mercury loads and identifies actions necessary to better understand and control methylmercury production. In addition, it addresses potential mercury sources and describes actions necessary to manage risks to Bay fish consumers. The adaptive implementation section describes the method and schedule for evaluating and adapting the TMDL and implementation plan as needed to assure water quality standards are attained. Mercury Source Control ActionsThis section, organized by mercury source categories, specifies actions required to achieve allocations and implement the TMDL. Central Valley WatershedThe Central Valley Regional Water Quality Control Board (Central Valley Water Board) is developing mercury TMDLs for several mercury-impaired water bodies in its region that drain to San Francisco Bay. The Central Valley Water Board staff is currently developing a mercury TMDL for portions of the Delta within the Central Valley region designed to meet the Central Valley watershed’s load allocation. This Delta mercury TMDL is scheduled for consideration as a Basin Plan Amendment by the Central Valley Water Board by December 2006. Attainment of the load allocation shall be assessed as a five-year average annual mercury load by one of two methods. First, attainment may be demonstrated by documentation provided by the Central Valley Water Board that shows a net 110 kg/yr decrease in total mercury entering the Delta from within the Central Valley region. Alternatively, attainment of the load allocation may be demonstrated by multiplying the flow-weighted suspended sediment mercury concentration by the sediment load measured at the RMP Mallard Island monitoring station. If sediment load estimates are unavailable, the load shall be assumed to be 1,600 million kg of sediment per year. The mercury load fluxing past Mallard Island will be less than or equal to 330 kg/yr after attainment of the allocation. The allocation for the Central Valley watershed should be achieved within 20 years after the Central Valley Water Board begins implementing its TMDL load reduction program. Studies need to be conducted to evaluate the time lag between the remediation of mercury sources and resulting load reductions from the Delta. An interim loading milestone of 385 kg/yr of mercury, halfway between the current load and the allocation, should be attained ten years after implementation of the Central Valley Delta TMDL begins. This schedule will be reevaluated as the load reduction plans are implemented. Urban Stormwater RunoffThe wasteload allocations shown in Table 7.2.2-2 shall be implemented through the NPDES stormwater permits issued to urban runoff management agencies and the California Department of Transportation (Caltrans). The urban stormwater runoff allocations implicitly include all current and future permitted discharges, not otherwise addressed by another allocation, and unpermitted discharges within the geographic boundaries of urban runoff management agencies (collectively, “source category”) including, but not limited to, Caltrans roadway and non-roadway facilities and rights-of-way, atmospheric deposition, public facilities, properties proximate to stream banks, industrial facilities, and construction sites. The allocations for this source category should be achieved within 20 years, and, as a way to measure progress, an interim loading milestone of 120 kg/yr, halfway between the current load and the allocation, should be achieved within ten years. If the interim loading milestone is not achieved, NPDES-permitted entities shall demonstrate reasonable and measurable progress toward achieving the 10-year loading milestone. The NPDES permits for urban runoff management agencies shall require the implementation of best management practices and control measures designed to achieve the allocations or accomplish the load reductions derived from the allocations. In addition to controlling mercury loads, best management practices or control measures shall include actions to reduce mercury-related risks to humans and wildlife. Requirements in each permit issued or reissued and applicable for the term of the permit shall be based on an updated assessment of control measures intended to reduce pollutants in stormwater runoff to the maximum extent practicable and remain consistent with the section of this chapter titled “Surface Water Protection and Management—Point Source Control—Stormwater Discharges.” The following additional requirements are or shall be incorporated into NPDES permits issued or reissued by the Water Board for urban runoff management agencies.
Once the Water Board accepts that a requirement has been completed by an urban runoff management agency, it need not be included in subsequent permits for that agency. These requirements apply to municipalities covered by the statewide municipal stormwater general permit (issued by the State Water Resources Control Board) five years after the effective date of the San Francisco Bay mercury TMDL. Urban runoff management agencies have a responsibility to oversee various discharges within the agencies’ geographic boundaries. However, if it is determined that a source is substantially contributing to mercury loads to the Bay or is outside the jurisdiction or authority of an agency the Water Board will consider a request from an urban runoff management agency which may include an allocation, load reduction, and/or other regulatory requirements for the source in question. Within the jurisdiction of each urban runoff management agency, Caltrans is responsible for discharges associated with roadways and non-roadway facilities. Consequently, Caltrans shall be required to implement the following actions:
Guadalupe River Watershed (Mining Legacy)In the near term, the effort underway to develop the Guadalupe River Watershed Mercury TMDL will be the mechanism used to implement and track progress toward achieving the load allocation. Ultimately, the Water Board expects the implementation plan for the Guadalupe River Watershed Mercury TMDL to integrate implementation efforts relative to that TMDL with those implementation efforts for the San Francisco Bay mercury TMDL. The Guadalupe River Watershed Mercury TMDL will provide a watershed-wide mercury management strategy. Efforts are already underway in the watershed to take early actions to reduce mercury loads, and more are planned. A high priority for the watershed-based strategy is to control upper watershed sources associated with the mining legacy to avoid compromising actions taken in the lower watershed. The strategy will include measures that prevent mercury-laden sediment from reaching the Bay, either by removal or by preventing their transport to the Bay. The strategy will also feature measures intended to reduce methylmercury production and risks to human health and wildlife. An essential component of the strategy will also involve testing and evaluation of new techniques and control measures, the benefits of that may apply throughout the Bay. As the mercury load, methylation, and reductions resulting from these efforts are quantified by the dischargers identified through the Guadalupe River Watershed Mercury TMDL process, the Water Board will consider how the reductions achieved will be counted toward fulfillment of the load reductions required to meet the Guadalupe River watershed load allocation. The Guadalupe River watershed mining legacy mercury load allocation is expected to be attained within 20 years after the Water Board begins implementing the Guadalupe River Watershed Mercury TMDL. As a way to measure progress, an interim-loading milestone of 47 kg/yr of mercury, halfway between the current load and the allocation, should be achieved within ten years. If the interim loading milestone is not achieved, dischargers shall make reasonable and measurable progress toward achieving the ten-year load reduction through implementation of the watershed-wide strategy. Progress toward (a) the interim loading milestone, or (b) attainment of the allocation, shall be demonstrated by the dischargers identified through the Guadalupe River Watershed TMDL using one of the methods listed below:
Municipal WastewaterThe individual municipal wastewater wasteload allocations shown in Table 7.2.2-3 shall be implemented via individual mass limits and an aggregate mass limit that is the sum of the individual allocations, 11 kg/yr. The Water Board will issue a San Francisco Bay watershed mercury NPDES permit to all dischargers listed in Table 7.2.2-3 to implement the individual and aggregate mass limits. The wasteload allocations for this source category shall be achieved within 20 years, and, as a way to measure progress, interim individual allocations equal to a 20 percent reduction from 2000-2003 annual mass discharge levels shall be achieved within 10 years. These interim allocations, shown in Table 7.2.2-3, shall be implemented via individual mass limits and an aggregate mass limit that is the sum of the individual interim allocations, 14 kg/yr. During the initial ten years, individual mass limits shall be the 2000-2003 annual mass discharge levels shown in Table 7.2.2-3, and the aggregate mass limit is the sum of these individual mass discharge levels. If any aggregate mass limit is exceeded, the Water Board will pursue enforcement actions against those individual dischargers whose mass discharges exceed their individual mass limits. The mass limits and the following requirements shall be incorporated into the watershed NPDES permit for municipal wastewater dischargers:
The watershed NPDES permit shall also specify conditions that apply to each individual facility. These conditions are intended to minimize the potential for adverse effects in the immediate vicinity of discharges and to ensure that municipal wastewater facilities maintain proper operation, maintenance, and performance. If a facility exceeds its individual mercury load allocation as a 12-month rolling average or an effluent mercury trigger concentration, it shall be required to report the exceedance in its individual Self-Monitoring Report, implement a corrective action plan, and to submit a report within 60 days that:
Effluent mercury trigger concentrations for secondary treatment facilities are a daily maximum of 0.065 µg/l total mercury and monthly average of 0.041 µg/l total mercury. For advanced treatment facilities, effluent mercury trigger concentrations are a daily maximum of 0.021 µg/l total mercury and a monthly average of 0.011 µg/l total mercury. The Water Board will pursue enforcement action against dischargers that do not respond to exceedances of triggers or do not implement reasonable actions to correct and prevent trigger exceedances. Determination of reasonable actions will be based on an updated assessment of source control measures and wastewater treatment technologies applicable for the term of each issued or reissued permit. Industrial WastewaterThe individual wasteload allocations for the industrial wastewater discharges from the five Bay Area petroleum refineries (Chevron, ConocoPhillips, Martinez Refining Co., Ultramar Golden Eagle, and Valero) listed in Table 7.2.2-4, and the individual wasteload allocations for all other industrial wastewater facilities listed in Table 7.2.2-5 shall be implemented via individual mass limits and an aggregate mass limit that is the sum of the individual allocations, 1.3 kg/yr. If the aggregate mass limit is exceeded, the Water Board will pursue enforcement actions against those individual dischargers whose mass discharges exceed their individual mass limits. The mass limits and the following requirements shall be incorporated into NPDES permits for all industrial wastewater dischargers: Develop and implement effective programs to control mercury sources and loading including demonstration that discharge levels represent good performance based on an updated assessment of source control measures and wastewater treatment technologies (the level of effort will be commensurate with the mercury load and performance of the facility) and quantify the mercury load avoided or reduced; Develop and implement effective programs to reduce mercury-related risks to humans and wildlife and quantify the risk reductions resulting from these activities;
The NPDES permits for industrial facilities shall also specify conditions that apply to each individual facility. These conditions are intended to minimize the potential for adverse effects in the immediate vicinity of discharges and to ensure that industrial wastewater facilities maintain proper operation, maintenance, and performance. If a facility exceeds its individual mercury load allocation as a 12-month rolling average or an effluent mercury trigger concentration, it shall be required to report the exceedance in its individual Self-Monitoring Report, implement a corrective action plan, and submit a report within 60 days that:
Effluent mercury trigger concentrations are a daily maximum of 0.062 µg/l total mercury and monthly average of 0.037 µg/l total mercury. The Water Board will pursue enforcement action against dischargers that do not respond to exceedances of triggers or do not implement reasonable actions to correct and prevent trigger exceedances. Determination of reasonable actions will be based on an updated assessment of source control measures and wastewater treatment technologies applicable for the term of each issued or reissued permit. Bay Area petroleum refineries shall be required to work collaboratively with the Water Board to investigate the environmental fate of mercury in crude oil and report findings to the Water Board within five years of the effective date of the San Francisco Bay mercury TMDL implementation plan. These requirements may be implemented via the Water Board’s authority under Section 13267 of the California Water Code or petroleum refinery wastewater NPDES permits. The report shall address two key questions:
Sediment Dredging and DisposalThe allocation for sediment dredging and disposal is both mass-based and concentration-based. The mercury concentration in dredged material disposed of in the Bay shall not exceed the 99th percentile mercury concentration of the previous 10 years of Bay sediment samples collected through the Regional Monitoring Program (excluding stations outside the Bay like the Sacramento River, San Joaquin River, Guadalupe River and Standish Dam stations). Prior to disposal, the material shall be sampled and analyzed according to the procedures outlined in the 2001 U.S. Army Corps of Engineers document “Guidelines for Implementing the Inland Testing Manual in the San Francisco Bay Region.” All in-Bay disposal of dredged material shall comply with the Dredging and Disposal of Dredged Sediment program described in Chapter 4 and the Long-Term Management Strategy for the Placement of Dredged Material in the San Francisco Bay Region. The process of dredging and disposing of dredged material in the Bay may enhance biological uptake and methylmercury exposure. To address this concern, permitted dredging and disposal operations shall demonstrate that their activities are accomplished in a manner that does not increase bioavailability of mercury. As part of this demonstration, the Waste Discharge Requirements for such operations shall include requirements to conduct or cause to be conducted studies to better understand how their operations affect mercury fate, transport, and biological uptake. Atmospheric DepositionMercury that deposits directly on the Bay surface and the surrounding watershed is attributed to both remote and local sources. The extent to which these sources can be controlled is unknown and the Water Board’s authority to control such sources is limited. The load allocation does not allow an increase of current loads, and does not require a reduction from this source category at this time. Recent scientific studies suggest that mercury newly deposited from the atmosphere may be more available for biological uptake than mercury already present in an aquatic system. As such, the following implementation efforts need to be undertaken to evaluate the significance of atmospheric deposition and the feasibility of load reductions:
If local air sources are found to contribute substantially to atmospheric deposition loading to the Bay and its surrounding watershed, the Water Board will consider assigning allocations and load reductions to individual air sources and work with the Bay Area Air Quality Management District to ensure allocations are achieved. New Mercury SourcesAs the TMDL is implemented, new sources of mercury may emerge either as the result of a new facility applying for a discharge permit or as a result of a new source being discovered. The Water Board will consider establishing a load or wasteload allocation for a new mercury source under any of the following circumstances:
This section specifies actions required for sources that are potentially either discharging mercury or enhancing methylmercury production in the Bay. Mercury MinesLocal inactive mercury mines shall be addressed through continued implementation of the Mines and Mineral Producers Discharge Control Program (Mines Program) described in Chapter 4. The key regulatory component of this established program is that property owners of inactive and active mine sites that discharge stormwater contaminated by contact with any overburden, raw material, intermediate products, finished products, byproducts, or waste products are required to comply with NPDES industrial stormwater regulations. Under the Mines Program, the Water Board has the authority to issue individual industrial permits or allow the discharger to obtain coverage under the industrial stormwater general permit issued by the State Water Resources Control Board. For those mines that are not currently meeting the conditions set forth in the Mines Program, responsible parties shall attain compliance within five years of the effective date of the San Francisco Bay mercury TMDL implementation plan. Bay Margin Contaminated SitesA number of former industrial and military sites that contain mercury-enriched sediment surround the Bay. Available data are insufficient at this time to determine whether these sites may be discharging to the Bay. While the load these sites contribute to the Bay may be small relative to known sources, these sites may pose local threats. As such, cleanup of these sites is a Water Board priority and many cleanups are underway. The Water Board will require parties responsible for Bay margin contaminated sites to:
These requirements shall be incorporated into relevant site cleanup plans within five years of the effective date of the San Francisco Bay mercury TMDL, and the actions shall be fully implemented within ten years of the effective date of this TMDL. WetlandsWetlands may contribute substantially to methylmercury production and biological exposure to mercury within the Bay. Plans for extensive wetland restoration in the San Francisco Bay region raise the concern that mercury methylation may increase, thereby increasing the amount of mercury entering the food web. Implementation tasks related to wetlands focus on managing existing wetlands and ensuring that new constructed wetlands are designed to minimize methylmercury production and subsequent transfer to the food web. The Water Board issues Waste Discharge Requirements and Clean Water Act Section 401 certifications that set forth conditions related to Bay filling and the construction and management of wetlands. To implement the San Francisco Bay mercury TMDL, the Waste Discharge Requirements and Section 401 certifications for wetland projects shall include provisions that the restored wetland region be designed and operated to minimize methylmercury production and biological uptake, and result in no net increase in mercury or methylmercury loads to the Bay. Additionally, projects must include pre- and post-restoration monitoring to demonstrate compliance. There is much active research on mercury cycling in wetlands. Information about how to manage wetlands to suppress or minimize mercury methylation will be adaptively incorporated into this implementation plan as it becomes available. Risk ManagementThe mercury problem in San Francisco Bay may take decades to solve. However, there are activities that should be undertaken immediately to help manage the risk to consumers of mercury-contaminated fish. In this effort, the Water Board will work with the California Office of Environmental Health Hazard Assessment, the California Department of Health Services, and dischargers that pursue risk management as part of their mercury-related programs. The risk management activities will include the following:
Adaptive ImplementationThe Water Board will adapt the TMDL to incorporate new and relevant scientific information such that effective and efficient actions can be taken to achieve TMDL goals. Approximately every five years, the Water Board will review the San Francisco Bay mercury TMDL and evaluate new and relevant information from monitoring, special studies, and scientific literature. The reviews will be coordinated through the Water Board’s continuing planning program and will provide opportunities for stakeholder participation. Any necessary modifications to the targets, allocations, or implementation plan will be incorporated into the Basin Plan. At a minimum, the following focusing questions will be used to conduct the reviews. Additional focusing questions will be developed in collaboration with stakeholders during each review.
Using available data, the load and wasteload allocations were determined on the basis of their sufficiency to achieve water quality standards. As part of the adaptive implementation process, the Water Board will review the TMDL as a whole and determine whether new evidence suggests revisions of specific load and wasteload allocations that will result in more strategic, efficient, and cost effective achievement of water quality standards.For example, as reliable information becomes available regarding methylation control or the relative bioavailability of sources, the Water Board will consider adjusting allocations to implement the TMDL more effectively. The Water Board may also consider revising implementation requirements and/or resulting permit requirements if such changes are consistent with the assumptions and requirements of the allocations and the cumulative effect of such changes will ensure attainment of water quality standards. Achievement of the allocations for three of the largest source categories (Central Valley Watershed, Urban Stormwater Runoff, Guadalupe River Watershed) is projected to take 20 years, with an interim 10-year milestone of fifty percent achievement. Approximately 10 years after the effective date of the TMDL or any time thereafter, the Water Board will consider modifying the schedule for achievement of the load allocations for a source category or individual discharger provided that they have complied with all applicable permit requirements and all of the following have been accomplished relative to that source category or discharger:
Achievement of the wasteload allocations for municipal wastewater dischargers is required within 20 years, and interim allocations within 10 years. The interim allocations are expected to be attained though aggressive pollution prevention and other cost-effective mercury reduction methods. The final wasteload allocations are expected to be attained through wastewater treatment system improvements and/or implementation of a pollutant offset program. Approximately 10 years after the effective date of the TMDL or any time thereafter, the Water Board will consider modifying the schedule for achievement of the wasteload allocations or revisions to wasteload allocations if:
At approximately 20 years after the start of implementation and after taking the steps regarding schedule modification listed above, if a source category or individual discharger cannot demonstrate achievement of its allocation, despite implementation of all technically and economically feasible and cost effective control measures recognized by the Water Board as applicable for that source category or discharger, the Water Board will consider revising the allocation scheme provided that any resulting revisions ensure water quality standards are attained. Load and wasteload allocations have been assigned to individual entities. However, assigning loads by watersheds could be a useful approach for managing pollutant loads, particularly if net environmental benefits can be realized. A watershed-based allocation program would only involve watersheds in the San Francisco Bay region that drain to the Bay. Such an approach could involve urban runoff management programs, wastewater facilities, and other dischargers in a watershed accepting joint responsibility for load reductions. An acceptable watershed allocation program may include incentives for agencies to implement load reduction activities and account for avoided mercury loads as well as incentives for strategic removal or sequestration of mercury already in the system. Credits could be used to offset annual loads and attain allocations for multiple sources. In addition, the Water Board will encourage and consider a pilot mercury mass offset program if it is demonstrated that such a program is a more cost effective and efficient means of achieving water quality standards, and the relative potential for mercury from different sources to enter the food web and the potential for adverse local impacts have been evaluated. These programs should recognize and reward ongoing efforts that are above and beyond those required by this TMDL. Until such programs are established, the Water Board will consider mercury source control and risk reduction activities on a case-by-case basis to determine how they contribute toward achievement of TMDL goals. The Water Board will also include in any new or modified NPDES permit a reopener to implement a pollutant offset program when it is established. 7.2.3 San Francisco Bay Polychlorinated Biphenyls TMDLThe following sections establish the TMDL for total polychlorinated biphenyls including dioxin-like PCBs congeners (hereinafter referred to as PCBs) for the San Francisco Bay. The associated numeric target, allocations, and implementation plan are designed to ensure attainment of beneficial uses and water quality objectives for the San Francisco Bay. 7.2.3.1 Problem StatementAll segments of the San Francisco Bay have been identified as impaired due to elevated levels of PCBs in sport fish. Neither the narrative water quality objective, which states that controllable water quality factors shall not cause a detrimental increase in toxic substances found in bottom sediments or aquatic life, nor the numeric water quality objective of 0.00017 µg/L total PCBs in water is attained in the San Francisco Bay. The existing beneficial use for commercial and sport fishing is not fully supported. This TMDL addresses impairment of San Francisco Bay segments by PCBs. In the context of this TMDL, “San Francisco Bay” refers to all of the following water bodies:
This TMDL is intended to achieve protection of the commercial and sport fishing beneficial use and to the extent that other beneficial uses are affected by PCBs, the TMDL will also ensure protection of other beneficial uses, specifically, preservation of rare and endangered species, estuarine habitat and wildlife habitat. 7.2.3.2 Numeric TargetThe numeric target (also referred to as the TMDL target) to protect both human health and wildlife is an average fish tissue concentration of 10 micrograms total PCBs per kilogram of typically consumed fish, on a wet weight basis (10 µg/kg wet weight). Attainment of the total PCBs fish tissue numeric target will also protect human health and wildlife for dioxin-like PCBs. Attainment of the fish tissue target for PCBs in San Francisco Bay will be initially evaluated by comparing the average total PCBs concentrations in the edible portion of two fish species, white croaker (size class, 20 to 30 centimeters in length) and shiner surfperch (size class, 10 to 15 centimeters in length) to the target. Comparison of the fish target against these two species of fish is considered to be protective and provides a margin of safety for the TMDL, because PCBs concentrations in these species are the highest of the fish species measured and sport recreational fishers likely consume a variety of fish species, including those species with lower PCBs concentrations. As part of the adaptive implementation of this TMDL, the Water Board will require the collection of additional information regarding recreational and subsistence fishers’ patterns of consumption and evaluate if fish species other than white croaker and shiner surfperch should be considered to evaluate attainment of the target. 7.2.3.3 SourcesSources of PCBs to fish and the water column of San Francisco Bay fall into two categories: (1) external sources including atmospheric deposition, Central Valley inflow, municipal and industrial wastewater discharges, and urban and non-urban stormwater runoff; and (2) internal sources, including movement or release of PCBs already in San Francisco Bay sediments, specifically, dredging and in-Bay disposal of dredged sediment, erosion of bay bottom sediment containing PCBs (bed erosion), and in-Bay contaminated sediment sites. These sources and estimates of associated loads are shown in Table 7.2.3-1. Decreases of PCBs in San Francisco Bay occur via out-of-Bay dredge material disposal, natural attenuation, and outflow through the Golden Gate. 7.2.3.4 Total Maximum Daily LoadThe TMDL for PCBs in San Francisco Bay is 10 kg/year. Calculation of the TMDL is based on two models: a food-web PCBs bioaccumulation model and a long-term fate mass balance model. The model results predict that attainment of the numeric target will occur when the total PCBs concentration in surface sediments in the Bay declines to one µg/kg, which will be achieved when loads from external sources are reduced to 10 kg/year. 7.2.3.5 Load and Wasteload AllocationsLoad allocations are presented in Table 7.2.3-2 for source categories. Individual wasteload allocations for municipal wastewater dischargers and industrial wastewater dischargers are presented in Table 7.2.3-3 and Table 7.2.3-4. Individual wasteload allocations for stormwater runoff to county-based watersheds are presented in Table 7.2.3-5. 7.2.3.6 Implementation PlanThe implementation plan includes three general implementation categories: control of external loadings of PCBs to the Bay, control of internal sources of PCBs within the Bay, and actions to manage risks to Bay fish consumers. In addition, the plan includes monitoring to measure attainment of the numeric target and load allocations, and measuring implementation progress. The plan will be implemented in phases via an adaptive implementation strategy founded on requiring actions in each category based on the current state of knowledge of PCBs sources and control measures, while also conducting studies to improve our understanding of PCBs sources, control options, and fate in the environment. External SourcesThis section, organized by source categories, specifies actions required to achieve allocations and implement the TMDL. Central Valley WatershedSediments entering the Bay from the Central Valley have lower concentrations of PCBs than in-Bay sediment. Major mass loading events that occur during episodic high flow conditions generally flow directly out of the Bay through the Golden Gate. It is anticipated that the Central Valley allocation will be attained through natural attenuation. Municipal and Industrial Wastewater DischargersWasteload allocations shall be implemented through NPDES permits that require implementation of best management practices to maintain optimum treatment performance for solids removal and the identification and management of controllable sources. NPDES permits shall include effluent limits based on current performance and a requirement for quantification of PCBs loads to the Bay in order to determine attainment of the wasteload allocations. Compliance with effluent limits shall be determined using a Title 40, Code of Federal Regulations, Part 136 analytical method (effective as of April 25, 2007). In addition, municipal and industrial wastewater dischargers will be required to support actions to reduce the health risks of people who eat PCBs-contaminated, San Francisco Bay fish and to conduct or cause to be conducted monitoring, and studies to fill critical data needs identified in the adaptive implementation section. It is the Water Board’s intent to implement individual wasteload allocations via numeric water quality-based effluent limitations for PCBs in NPDES permits. These limits shall represent individual dischargers’ PCBs loads, consistent with the underlying assumptions and requirements of the wasteload allocations. In the absence of actual discharge performance data sufficient to calculate such limits, the Water Board will apply appropriate uncertainty factors to the individual wasteload allocations. Dischargers shall also be required to conduct sufficient monitoring of their effluent, which accounts for discharge variability and blended effluent, to enable calculation of current PCBs loading. These requirements will be implemented via NPDES permits or the Water Board’s authority under Section 13267 of the California Water Code, such that monitoring begins no later than January 2009 and is completed in a timely manner. Stormwater RunoffStormwater runoff wasteload allocations shall be achieved within 20 years and shall be implemented through the NPDES stormwater permits issued to stormwater runoff management agencies and the California Department of Transportation (Caltrans). The urban stormwater runoff wasteload allocations implicitly include all current and future permitted discharges, not otherwise addressed by another allocation, and unpermitted discharges within the geographic boundaries of stormwater runoff management agencies including, but not limited to, Caltrans roadway and non-roadway facilities and rights-of-way, atmospheric deposition, public facilities, properties proximate to stream banks, industrial facilities, and construction sites. Requirements in each NPDES permit issued or reissued, shall be based on an updated assessment of best management practices and control measures intended to reduce PCBs in urban stormwater runoff. Control measures implemented by stormwater runoff management agencies and other entities (except construction and industrial sites) shall reduce PCBs in stormwater runoff to the maximum extent practicable. Control measures for construction and industrial sites shall reduce discharges based on best available technology economically achievable. All permits shall remain consistent with Section 4.8 - Stormwater Discharges. In the first five-year permit term, stormwater permittees will be required to implement control measures on a pilot scale to determine their effectiveness and technical feasibility. In the second permit term, stormwater permittees will be required to implement effective control measures, that will not cause significant adverse environmental impacts, in strategic locations, and to develop a plan to fully implement control measures that will result in attainment of allocations, including an analysis of costs, efficiency of control measures and an identification of any significant environmental impacts. Subsequent permits will include requirements and a schedule to implement technically feasible, effective and cost efficient control measures to attain allocations. If, as a consequence, allocations cannot be attained, the Water Board will take action to review and revise the allocations and these implementation requirements as part of adaptive implementation. In addition, stormwater permittees will be required to develop and implement a monitoring system to quantify PCBs urban stormwater runoff loads and the load reductions achieved through treatment, source control and other actions; support actions to reduce the health risks of people who consume PCBs-contaminated San Francisco Bay fish; and conduct or cause to be conducted monitoring, and studies to fill critical data needs identified in the adaptive implementation section. Stormwater runoff management agencies have a responsibility to oversee various discharges within the agencies’ geographic boundaries. However, if it is determined that a source is substantially contributing to PCBs loads to the Bay or is outside the jurisdiction or authority of an agency the Water Board will consider a request from an stormwater runoff management agency which may include an allocation, load reduction, and/or other regulatory requirements for the source in question. Urban Stormwater Runoff Treatment by Municipal Wastewater DischargersRouting of urban stormwater runoff through municipal wastewater treatment facilities may be an efficient means of reducing PCBs, and other particle-associated contaminant loads to the Bay. This load allocation shall be implemented through a permit. Within five years of adoption of this TMDL, the Water Board will consider issuance of a permit under which municipal wastewater dischargers can apply for a portion of this reserved allocation. Internal SourcesIn-Bay PCB-Contaminated SitesA number of former industrial and military sites adjacent to PCBs-enriched sediment are found throughout the Bay. This TMDL does not require any specific party to implement new actions for in-Bay PCB-contaminated sites. However, cleanup of these sites is a Water Board priority and many cleanups are underway. The Water Board will maintain an inventory of contaminated sites and continue to set priorities for investigating and remediating the sites. The existing list of in-Bay PCB-contaminated sites referred to in this TMDL is based on data collected under the Bay Protection Toxic Cleanup Program, which identified sites with total PCBs in sediment that exceed 180 µg/kg. This TMDL does not set a cleanup level for total PCBs in sediment. The fish tissue target of 10 µg/kg and the sediment goal of one µg/kg are not cleanup standards, nor should they be considered appropriate, or relevant, and applicable requirements (ARARs) or a “to-be-considered” ARAR under the National Contingency Plan, 40 CFR Part 300 et. Seq. or the 1986 Superfund Amendments and Reauthorization Act. An analysis of the feasibility, technical practicability, and potential environmental impacts of individual clean-up actions is currently required prior to conducting cleanup of contaminated in-Bay sediment overseen by the Water Board and the Department of Toxic Substances Control and will continue to be required, not withstanding this TMDL. The Water Board has the authority to approve, disapprove or condition these projects to minimize adverse environmental impacts while achieving the goals of environmental cleanup. The Water Board will coordinate cleanup actions with the U.S. EPA and the Department of Toxic Substances Control, and advise them that the fish tissue target and sediment goal do not constitute cleanup standards for ARARs. The Water Board will issue cleanup orders as necessary. The Water Board will require responsible parties for each specific Bay margin contaminated site to:
These requirements shall be incorporated into relevant site investigation plans within five years of the effective date of this TMDL, and the actions shall be fully implemented within ten years of the effective date of this TMDL or as agreed to in the individual site investigation plan. Navigational DredgingThe PCBs concentration in dredged material disposed of in the Bay shall not exceed the 99th percentile PCBs concentration of the previous 10 years of Bay sediment samples collected through the RMP (excluding stations outside the Bay like the Sacramento River, San Joaquin River, Guadalupe River and Standish Dam stations). Prior to disposal, the material shall be sampled and analyzed according to the procedures outlined in the 2001 U.S. Army Corps of Engineers document “Guidelines for Implementing the Inland Testing Manual in the San Francisco Bay Region.” All in-Bay disposal of dredged material shall comply with Section 4.20, entitled Dredging and Disposal of Dredged Sediment, including the Long Term Management Strategy. Additionally, dredged material dischargers will be required to conduct or cause to be conducted studies to fill critical data needs identified in the Adaptive Implementation section. Risk ManagementLoad reductions and attainment of the numeric target to support fishing in the Bay as a beneficial use will take time to achieve. However, there are actions that should be undertaken prior to achievement of the numeric fish tissue target to help manage the risk to consumers of PCBs-contaminated fish. The Water Board will work with the California Office of Environmental Health Hazard Assessment, the California Department of Toxic Substances Control, the California Department of Public Health, dischargers, and interested parties to pursue risk management strategies. The risk management activities will include the following:
7.2.3.7 Critical Data NeedsAdditional data and other information will be needed to assess both the progress toward attainment of the fish tissue target and to evaluate the need for modifications to the implementation plan, TMDL, and/or allocations. Dischargers will be required to conduct or cause to be conducted the following studies to fill critical data needs.
MonitoringMonitoring to demonstrate progress toward attainment of the TMDL target shall be conducted by maintaining discharger-funded RMP monitoring of PCBs in San Francisco Bay fish, sediments, and water at a spatial scale and frequency to track trends in the decline of PCBs in the Bay. Monitoring of load allocations to demonstrate progress towards attainment shall be conducted by municipal and industrial wastewater dischargers and stormwater permittees as discussed in external sources above. Continued regular monitoring of PCB loads from the Central Valley and other tributaries to the Bay shall be conducted by maintaining discharger-funded RMP monitoring in order to provide information on the long term decline of PCBs to the Bay and to confirm the assumption that Central Valley loads are being reduced due to natural attenuation. Monitoring of loads allocated to other sources will be considered as part of the RMP special studies. Adaptive ImplementationAdaptive implementation entails taking actions commensurate with the existing, available information, reviewing new information as it becomes available, and modifying actions as necessary based on the new information. Taking action allows progress to occur while more and better information is collected and the effectiveness of current actions is evaluated. Accordingly, this TMDL will be implemented in phases starting with actions described in each source category, risk management, monitoring, and critical data needs section above with subsequent modifications and phases based on improved knowledge of PCBs sources, control measures, and fate in the environment. The Water Board will adapt the TMDL and implementation plan to incorporate new and relevant scientific information such that effective and efficient measures can be taken to achieve the allocations and numeric fish tissue target. The Water Board staff will present an annual progress report to the Water Board on implementation of the TMDL that includes evaluation of new and relevant information that becomes available through implementation actions, monitoring, special studies, and the scientific literature. Within ten years of the effective date of the TMDL, Water Board will consider a Basin Plan amendment that will reflect and incorporate the data and information that is generated in the intervening years. The Water Board will consider amending the PCBs TMDL and implementation plan as necessary to ensure attainment of water quality standards in a timely manner while considering the financial and environmental consequences of new control measures. In particular, achievement of the allocations for stormwater runoff, which is projected to take 20 years, will be challenging. Consequently, the Water Board will consider modifying the schedule for achievement of the load allocations for stormwater runoff provided that dischargers have complied with all applicable permit requirements and accomplished all of the following:
7.2.4 North San Francisco Bay Selenium Total Maximum Daily Load (TMDL)The following sections establish the TMDL for selenium in North San Francisco Bay segments (North Bay) including the portion of the Sacramento/San Joaquin Delta (within the San Francisco Bay region), Suisun Bay, Carquinez Strait, San Pablo Bay, and Central Bay. The associated numeric targets, allocations, and implementation plan are designed to ensure attainment of selenium water quality standards, including beneficial uses in the North Bay.7.2.4.1 Problem StatementThis TMDL addresses selenium impairment in North San Francisco Bay segments. Selenium is an essential and naturally-occurring micronutrient but in high quantities can cause reproductive impairment. Dietary uptake of particulate selenium is the most important exposure pathway for aquatic organisms, especially predators, and some types of food webs bioaccumulate selenium more efficiently than others. In the North Bay, selenium bioaccumulation at levels of concern has been detected only in clam–eating bottom feeders, such as white sturgeon and Sacramento splittail. Sturgeon feed predominantly on benthic organisms, including invasive, non-native clams (i.e., Potamocorbula amurensis) that are very efficient selenium bioaccumulators, which makes sturgeon susceptible to bioaccumulation of selenium to toxic levels. This TMDL is intended to ensure protection of the estuarine habitat beneficial uses, and to the extent that other beneficial uses are affected by selenium, the TMDL will also ensure protection of other beneficial uses, specifically, preservation of rare and endangered species, wildlife, and commercial and sport fishing beneficial uses.7.2.4.2 Numeric TargetsThe numeric targets for the North Bay are listed in Table 7.2.4-1.The whole-body fish tissue target protects against long-term chronic effects of selenium in fish and forms the basis for the water column target. Both the fish tissue and the water column targets will be evaluated to assess protection of beneficial uses. Attainment of the fish tissue targets will be assessed by comparing measured selenium concentrations in fish to the appropriate tissue. Concentrations in sturgeon will be compared to the muscle tissue target, because sturgeon are too large a fish to be analyzed whole and, therefore, comparison to the whole-body numeric target is not feasible. Use of nonlethal sampling methods, i.e., sampling of tissue plugs, in lieu of muscle tissue sampling for sturgeon, is allowed, if there is documentation that the nonlethal method provides data comparable to muscle tissue data. 7.2.4.3 SourcesThe main inputs of selenium into the North Bay include contributions from the Sacramento and San Joaquin Rivers as Central Valley watershed load (4070 kg/yr), local tributaries (520 kg/yr), atmospheric deposition (<30 kg/yr), discharges from petroleum refineries (571 kg/yr), and municipal and industrial wastewater dischargers (117 kg/yr). While loads from the Sacramento River, local tributaries, including urban runoff, and atmospheric deposition represent natural background, the San Joaquin River loads include an anthropogenic source, agricultural drainage, generated by irrigation of seleniferous soils.7.2.4.4 Total Maximum Daily Load and AllocationsThe TMDL for selenium is 5300 kg/year and represents the sum of loads from the existing major sources (Table 7.2.4-2). Because selenium bioaccumulation is a long-term process, there is no evidence that selenium bioaccumulation is notably higher at any particular time of year, despite the strong seasonal variability in loads reaching the North Bay.The TMDL is based on long-term estimates of loads from major sources; therefore the TMDL and allocations are expressed as annual loads. Load allocations for major source categories are presented in Table 7.2.4-2. Individual wasteload allocations for petroleum refineries and municipal and industrial wastewater dischargers are presented in Table 7.2.4-3 and Table 7.2.4-4. 7.2.4.5 Implementation PlanThe intent of this implementation plan is to ensure attainment of selenium water quality standards. Existing selenium concentrations in the water column are below the TMDL target. Concentrations in sturgeon have been gradually decreasing since the late 1990s. For these reasons, it is appropriate to base the TMDL on current loading and focus the implementation plan on maintaining the current load into the future.The main goal of the implementation plan is to prevent increases of selenium concentrations in North Bay waters and attain safe levels of selenium in fish, specifically sturgeon. This will be accomplished through:
Because loads from the Sacramento River, local tributaries, and atmospheric deposition are representative of natural background, no implementation actions are necessary. 7.2.5 San Francisco Bay Beaches Bacteria TMDLThe following sections establish the TMDL for San Francisco Bay beaches impaired by bacteria. The numeric targets, load and waste load allocations, and implementation plan are designed to support and protect the Bay’s designated beneficial use of water contact recreation (e.g., swimming and wading).7.2.5.1 Problem StatementThe waters adjacent to several San Francisco Bay beaches are impaired by indicator bacteria. Bacteriological water quality objectives are exceeded based on elevated indicator bacteria densities, and thus, there is impairment of the water contact recreation (REC-1) beneficial use in these water bodies. Recreating in waters with elevated indicator bacteria densities has long been associated with adverse health effects. Specifically, national epidemiological studies demonstrate a causal relationship between adverse health effects and recreational water quality, as measured by indicator bacteria densities.
China Camp Beach and McNears Beach are on the list of impaired water bodies because levels of only one bacterial indicator in waters at these beaches, total coliform, exceeds the Basin Plan’s water quality objective. Waters at the other beaches exceed the bacterial indicator for Enterococcus and other bacterial indicators. 7.2.5.2 SourcesBacteria sources are identified based on documentation of inadequately-treated human waste discharges, such as sanitary sewer overflow reports, and the scientific evidence linking land uses in the vicinity of the beaches to elevated bacteria concentrations in urban runoff to the beaches. If not properly managed, the following source categories have the potential to discharge bacteria to San Francisco Bay beaches at levels that cause or contribute to exceedances of water quality objectives: sanitary sewer collection systems, urban runoff, pets at the beaches, vessels, and wildlife. Wet weather discharges from the City of San Francisco’s combined sewer system that are authorized pursuant to U.S. EPA’s Combined Sewer Overflow (CSO) Control Policy (see Section 4.9 Wet Weather Overflows) are not considered a significant source of bacteria to these San Francisco beaches. 7.2.5.3 Numeric TargetsThis TMDL establishes a desired, or target, condition for water contact recreation use at impaired San Francisco Bay beaches. The numeric targets are the Enterococcus water quality objectives established for water contact recreation uses in marine and estuarine waters (Table 3-1) and on the U.S. EPA’s 2012 recommended Enterococcus criteria for water contract recreation in marine and fresh water. The numeric targets for this TMDL are listed in Table 7.2.5-1. 7.2.5.4 Total Maximum Daily LoadsThe TMDL for San Francisco Bay beaches is equivalent to the Basin Plan’s water quality objectives and the numeric target for Enterococcus as shown in Table 7.2.5-1. 7.2.5.5 Load and Waste Load AllocationsDensity-based pollutant allocations for bacteria source categories are the same as the numeric targets and the TMDL listed above. Table 7.2.5-2 summarizes the load and wasteload allocations for discharges of bacteria to impaired San Francisco Bay beaches. 7.2.5.6 Implementation PlanThis Implementation Plan builds on management measures required by existing local, regional, and statewide regulations and orders to reduce or eliminate waste discharges from sanitary sewer collection systems, urban runoff, pets at beaches, and vessels. The plan requires actions consistent with existing regulations and orders, including the following:
The entities responsible for implementing this plan are stated below, as are the regulatory mechanisms by which the Water Board may require that the actions be taken. Sanitary Sewer Collection Systems 7.2.5.7 China Camp and McNears Beaches ImplementationBoth China Camp and McNears beaches already meet the numeric targets for Enterococcus, and therefore no further implementation actions are necessary. 7.2.5.8 Water Quality MonitoringImplementing parties are responsible for developing and implementing a monitoring plan sufficient to assess compliance with the numeric targets at the beaches. At a minimum, implementing parties shall continue monitoring the beaches as required under California Health and Safety Code section 115880 and provide a data evaluation report annually to the Water Board. It is recommended that the implementing parties select a lead entity to assess the monitoring data and compile the annual report.
Implementing parties need not wait four years if they wish to begin supplemental monitoring earlier. At any time, implementing parties may present data indicating the presence of natural sources of bacteria to the beach, such as non-nuisance wildfowl, to the Executive Officer of the Water Board, and the Water Board may consider developing new allocations that could include a natural source exclusion. Until such action is taken by the Water Board, the implementation requirements and completion dates shall remain in effect. 7.2.5.9 Adaptive ImplementationThe Water Board will adapt the TMDL and Implementation Plans to incorporate new and relevant scientific information such that effective and efficient measures can be taken to achieve standards. At approximately six-year intervals, Water Board staff will evaluate new and relevant information from implementation actions, water quality monitoring results, and the scientific literature, including any local reference system studies, U.S. EPA’s revised recommended bacteria criteria, or new or revised State bacteria water quality objectives, and assess progress toward attaining the TMDL. Water Board staff will present that information to the Water Board, and the Water Board will consider a Basin Plan amendment that reflects any necessary modifications to the targets, load and wasteload allocations, or implementation plan.
|
|
<<< Previous - Region-Wide Water Quality Attainment Strategies and TMDLs |